Haemostasis pp 241-262 | Cite as

Platelet Flow Cytometry

  • Matthew D. Linden
Part of the Methods in Molecular Biology book series (MIMB, volume 992)


Flow cytometry is a powerful and versatile tool which can be used to provide substantial phenotypic data on platelets by yielding quantitative information of their physical and antigenic properties. This includes surface expression of functional receptors, bound ligands, expression of granule components, interaction of platelets with other platelets via aggregation, or interaction with other blood components, such as leukocytes or the plasma coagulation system. Quantitative assessment of these parameters may facilitate the diagnosis of inherited or acquired platelet disorders, assist in the diagnosis of diseases associated with platelet activation, or assist in the monitoring of safety and efficacy of antiplatelet therapy.

Key words

Platelet activation Flow cytometry Heterotypic aggregates Platelet immunophenotyping Platelet disorders Monoclonal antibodies Fluorescence 



The author would like to thank Professor Alan D. Michelson, Asst. Prof. Andrew L. Frelinger III, and Marc R. Barnard from The Center for Platelet Research Studies at Children’s Hospital Boston for their role in the development and optimization of many of these protocols.


  1. 1.
    Michelson AD, Linden MD, Barnard MR, Furman MI, Frelinger AL (2006) Flow Cytometry. In: Michelson AD (ed) Platelets. Academic Press, San Diego, CA, pp 545–565Google Scholar
  2. 2.
    Shapiro HM (2003) Practical flow cytometry. Wiley-Liss, New YorkCrossRefGoogle Scholar
  3. 3.
    Linden MD, Frelinger AL III, Barnard MR, Przyklenk K, Furman MI, Michelson AD (2004) Application of flow cytometry to platelet disorders. Semin Thromb Hemost 30:501–511PubMedCrossRefGoogle Scholar
  4. 4.
    Krueger LA, Barnard MR, Frelinger AL III, Furman MI, Michelson AD (2002) Immunophenotyping analysis of platelets. Curr Protoc Cytom 6:1–17Google Scholar
  5. 5.
    Linden MD, Furman MI (2005) Monocyte-platelet aggregates in patients with ischemic heart disease. In: Morrow DA, Cannon C (eds) Cardiovascular biomarkers: pathophysiology and disease management. Humana, Totowa, NJ, p 487–493Google Scholar
  6. 6.
    Michelson AD, Benoit SE, Kroll MH, Li JM, Rohrer MJ, Kestin AS, Barnard MR (1994) The activation-induced decrease in the platelet surface expression of the glycoprotein Ib-IX complex is reversible. Blood 83:3562–3573PubMedGoogle Scholar
  7. 7.
    Shattil SJ, Hoxie JA, Cunningham M, Brass LF (1985) Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 260:11107–11114PubMedGoogle Scholar
  8. 8.
    Michelson AD, Furman MI (1999) Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol 6:342–348PubMedCrossRefGoogle Scholar
  9. 9.
    Abrams C, Shattil SJ (1991) Immunological detection of activated platelets in clinical disorders. Thromb Haemost 65:467–473PubMedGoogle Scholar
  10. 10.
    Rajasekhar D, Barnard MR, Bednarek FJ, Michelson AD (1997) Platelet hyporeactivity in very low birth weight neonates. Thromb Haemost 77:1002–1007PubMedGoogle Scholar
  11. 11.
    Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104:1533–1537PubMedCrossRefGoogle Scholar
  12. 12.
    Barnard MR, Krueger LA, Frelinger AL, Furman MI, Michelson AD (2003) Whole blood analysis of leukocyte-platelet aggregates. In: Robinson JP, Darzynkiewicz Z, Dean PN, Hibbs AR, Orfao A, Rabinovitch PS, Wheeless LL (eds) Current protocols in cytometry, vol 1. Wiley, New York, pp 06.15.01–06.15.08Google Scholar
  13. 13.
    Barnard MR, Linden MD, Frelinger AL III, Li Y, Fox ML, Furman MI, Michelson AD (2005) Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil procoagulant activity. J Thromb Haemost 3:2563–2570PubMedCrossRefGoogle Scholar
  14. 14.
    Furman MI, Krueger LA, Frelinger AL III, Barnard MR, Mascelli MA, Nakada MT, Michelson AD (2000) GPIIb-IIIa antagonist-induced reduction in platelet surface factor V/Va binding and phosphatidylserine expression in whole blood. Thromb Haemost 84:492–498PubMedGoogle Scholar
  15. 15.
    Serebruany VL, Kereiakes DJ, Dalesandro MR, Gurbel PA (1999) The flow cytometer model markedly affects measurement of ex vivo whole blood platelet-bound P-selectin expression in patients with chest pain: are we comparing apples with oranges. Thromb Res 96:51–56PubMedCrossRefGoogle Scholar
  16. 16.
    Krueger LA, Barnard MR, Frelinger AL III, Furman MI, Michelson AD (2002) Immunophenotypic analysis of platelets. In: Robinson JP, Darzynkiewicz Z, Dean PN, Hibbs AR, Orfao A, Rabinovitch PS, Wheeless LL (eds) Current protocols in cytometry, vol 1. Wiley, New York, pp 06.10.01–06.10.17Google Scholar
  17. 17.
    Filip DJ, Aster RH (1978) Relative hemostatic effectiveness of platelets stored at 4° and 22°C. J Lab Clin Med 91:618–624PubMedGoogle Scholar
  18. 18.
    Nurden AT, Nurden P (2002) Inherited disorders of platelet function. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 681–700Google Scholar
  19. 19.
    Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC (1998) Bernard-Soulier syndrome. Blood 91:4397–4418PubMedGoogle Scholar
  20. 20.
    Michelson AD (1987) Flow cytometric analysis of platelet surface glycoproteins: phenotypically distinct subpopulations of platelets in children with chronic myeloid leukemia. J Lab Clin Med 110:346–354PubMedGoogle Scholar
  21. 21.
    Jennings LK, Ashmun RA, Wang WC, Dockter ME (1986) Analysis of human platelet glycoproteins IIb-IIIa and Glanzmann’s thrombasthenia in whole blood by flow cytometry. Blood 68:173–179PubMedGoogle Scholar
  22. 22.
    Rao AK, Gabbeta J (2000) Congenital disorders of platelet signal transduction. Arterioscler Thromb Vasc Biol 20:285–289PubMedCrossRefGoogle Scholar
  23. 23.
    Reed GL (2002) Platelet secretion. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 181–195Google Scholar
  24. 24.
    Gordon N, Thom J, Cole C, Baker R (1995) Rapid detection of hereditary and acquired storage pool deficiency by flow cytometry. Br J Haematol 89:117–123PubMedCrossRefGoogle Scholar
  25. 25.
    Wall JE, Buijs-Wilts M, Arnold JT, Wang W, White MM, Jennings LK, Jackson CW (1995) A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 89:380–385PubMedCrossRefGoogle Scholar
  26. 26.
    Gawaz MP, Bogner C, Gurland HJ (1993) Flow-cytometric analysis of mepacrine-labelled platelets in patients with end-stage renal failure. Haemostasis 23:284–292PubMedGoogle Scholar
  27. 27.
    Chong BH, Pitney WR, Castaldi PA (1982) Heparin-induced thrombocytopenia: association of thrombotic complications with heparin-dependent IgG antibody that induces thromboxane synthesis in platelet aggregation. Lancet 2:1246–1249PubMedCrossRefGoogle Scholar
  28. 28.
    Chong BH (2002) Heparin-induced thrombocytopenia. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 571–591Google Scholar
  29. 29.
    Tomer A (1997) A sensitive and specific functional flow cytometric assay for the diagnosis of heparin-induced thrombocytopenia. Br J Haematol 98:648–656PubMedCrossRefGoogle Scholar
  30. 30.
    Fabris F, Scandellari R, Randi ML, Carraro G, Luzzatto G, Girolami A (2002) Attempt to improve the diagnosis of immune thrombocytopenia by combined use of two different platelet autoantibodies assays (PAIgG and MACE). Haematologica 87:1046–1052PubMedGoogle Scholar
  31. 31.
    Lindahl TL, Fagerberg IH, Larsson A (2003) A new flow cytometric method for measurement of von Willebrand factor activity. Scand J Clin Lab Invest 63:217–223PubMedCrossRefGoogle Scholar
  32. 32.
    Flores NA, Sheridan DJ (1994) The pathophysiological role of platelets during myocardial ischaemia. Cardiovasc Res 28:295–302PubMedCrossRefGoogle Scholar
  33. 33.
    Fuster V, Badimon L, Badinon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and acute coronary syndromes. N Engl J Med 326:310–318PubMedCrossRefGoogle Scholar
  34. 34.
    deWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 315:897–902CrossRefGoogle Scholar
  35. 35.
    Antithrombotic Trialist’s Collaboration (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J 324:71–86CrossRefGoogle Scholar
  36. 36.
    Peripheral Arterial Diseases Antiplatelet Consensus Group (2003) Antiplatelet therapy in peripheral arterial disease. Consensus statement. Eur J Vasc Endovasc Surg 26:1–16CrossRefGoogle Scholar
  37. 37.
    Schultheiss HP, Tschoepe D, Esser J, Schwippert B, Roesen P, Nieuwenhuis HK, Schmidt-Soltau C, Strauer B (1994) Large platelets continue to circulate in an activated states after myocardial infarction. Eur J Clin Invest 24:243–247PubMedCrossRefGoogle Scholar
  38. 38.
    Lee Y, Lee WH, Lee SC, Ahn KJ, Choi YH, Park SW, Seo JD, Park JE (1999) CD40L activation in circulating platelets in patients with acute coronary syndrome. Cardiology 92:11–16PubMedCrossRefGoogle Scholar
  39. 39.
    Koyama H, Maeno T, Fukumoto S, Shoji T, Yamane T, Yokoyama H, Emoto M, Shoji T, Tahara H, Inaba M, Hino M, Shioi A, Miki T, Nishizawa Y (2003) Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation 105:524–529CrossRefGoogle Scholar
  40. 40.
    Scharf RE, Tomer A, Marzec UM, Teirstein PS, Ruggeri ZM, Harker LA (1992) Activation of platelets in blood perfusing angioplasty-damaged coronary arteries. Flow cytometric detection. Arterioscler Thromb 12:1475–1487PubMedCrossRefGoogle Scholar
  41. 41.
    Linden MD, Furman MI, Frelinger AL III, Fox ML, Barnard MR, Li Y, Przyklenk K, Michelson AD (2007) Indices of platelet activation and the stability of coronary artery disease. J Thromb Haemost 5:761–765PubMedCrossRefGoogle Scholar
  42. 42.
    Linden MD, Furman MI, Michelson AD, Fox ML, Barnard MR, Li Y, Barringhaus KG, Przyklenk K, Frelinger AL III (2004) Indices of platelet activation as markers of recent myocardial infarction. Circulation 110(Suppl III)Google Scholar
  43. 43.
    Frelinger AL III, Linden MD, Furman MI, Li Y, Fox ML, Barnard MR, Barringhaus KG, Przyklenk K, Michelson AD (2004) Aspirin resistance is associated with markers of platelet activation and is not accounted for by noncompliance or aspirin underdosing. Circulation 110(Suppl III):216Google Scholar
  44. 44.
    Frelinger AL III, Li Y, Linden MD, Barnard MR, Fox ML, Christie DJ, Furman MI, Michelson AD (2009) Association of cyclooxygenase-1-dependent and -independent platelet function assays with adverse clinical outcomes in aspirin-treated patients presenting for cardiac catheterization. Circulation 120:2586–2596PubMedCrossRefGoogle Scholar
  45. 45.
    Nieuwland R, Sturk A (2002) Platelet-derived microparticles. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 255–265Google Scholar
  46. 46.
    Linden MD (2003) The hemostatic defect of cardiopulmonary bypass. J Thromb Thrombolysis 16:129–147PubMedCrossRefGoogle Scholar
  47. 47.
    Zilla P, Fasol R, Groscurth P, Klepethkow A, Reichenspurner H, Wolner E (1989) Blood platelets in cardiopulmonary bypass operations. J Thorac Cardiovasc Surg 97:379–388PubMedGoogle Scholar
  48. 48.
    Smith BR, Rinder HM, Rinder CS (2002) Cardiopulmonary bypass. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 727–741Google Scholar
  49. 49.
    Michelson AD (1994). Manipulation of haemostasis during paediatric cardiopulmonary bypass. In: Jonas R, Elliott M (eds) Cardiopulmonary bypass in neonates, infants and young children. Butterworth-Heinemann, Oxford, pp 110–123Google Scholar
  50. 50.
    de Rossi L, Wessiepe M, Buhre W, Kuhlen R, Hutschenreuter G, Rossaint R (2003) Effect of propofol on adhesion of activated platelets to leukocytes in human whole blood. Intensive Care Med 29:1157–1163PubMedCrossRefGoogle Scholar
  51. 51.
    Hu H, Hjemdahl P, Li N (2002) Effects of insulin on platelet and leukocyte activity in whole blood. Thromb Res 107:209–215PubMedCrossRefGoogle Scholar
  52. 52.
    Keha D, Thieme A, Kurer I, Falke KJ, Gerlach H (2003) Inactivation of platelet glycoprotein IIb/IIIa receptor by nitric oxide donor 3-morpholino-sydnonimine. Blood Coagul Fibrinolysis 14:327–334CrossRefGoogle Scholar
  53. 53.
    Kozek-Langenecker SA, Mohammad SF, Masaki T, Green W, Kamerath C, Cheung AK (2000) The effects of aprotinin on platelets in vitro using whole blood flow cytometry. Anesth Analg 90:12–16PubMedCrossRefGoogle Scholar
  54. 54.
    Kozek-Langenecker SA, Mohammad SF, Masaki T, Kamerath C, Cheung AK (2000) The effects of heparin, protamine, and heparinase 1 on platelets in vitro using whole blood flow cytometry. Anesth Analg 90:808–812PubMedCrossRefGoogle Scholar
  55. 55.
    Heesch CM, Wilhelm CR, Ristich J, Adnane J, Bontempo FA, Wagner WR (2000) Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart 83:688–695PubMedCrossRefGoogle Scholar
  56. 56.
    Horn NA, de Rossi L, Robitzsch T, Hecker KE, Hutschenreuter G, Rossaint R (2003) The effects of sevoflurane and desflurane in vitro on platelet-leukocyte adhesion in whole blood. Anaesthesia 58:312–319PubMedCrossRefGoogle Scholar
  57. 57.
    Michelson AD, Benoit SE, Furman MI, Breckwoldt WL, Rohrer MJ, Barnard MR, Loscalzo J (1996) Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol 270:H1640–H1648PubMedGoogle Scholar
  58. 58.
    Michelson AD, Barnard MR, Khuri SF, Rohrer MJ, MacGregor H, Valeri CR (1999) The effects of aspirin and hypothermia on platelet function in vivo. Br J Haematol 104:64–68PubMedCrossRefGoogle Scholar
  59. 59.
    Perneby C, Wallen NH, Hofman-Bang C, Tornvall P, Ivert T, Li N, Hjemdahl P (2007) Effect of clopidogrel treatment on stress-induced platelet activation and myocardial ischemia in aspirin-treated patients with stable coronary artery disease. Thromb Haemost 98:1316–1322PubMedGoogle Scholar
  60. 60.
    Egan BM, Papademetriou V, Wofford M, Calhoun D, Fernandes J, Riehle JE, Nesbitt S, Michelson E, Julius S (2005) Metabolic syndrome and insulin resistance in the TROPHY sub-study: contrasting views in patients with high-normal blood pressure. Am J Hypertens 18:3–12PubMedCrossRefGoogle Scholar
  61. 61.
    Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, Turner AH, Mann NJ, Sinclair AJ (2003) Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr 77:1466–1473PubMedGoogle Scholar
  62. 62.
    Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR (1994) Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost 71:633–640PubMedGoogle Scholar
  63. 63.
    Lekakis J, Triantafyllidi H, Galea V, Koutroumbi M, Theodoridis T, Komporozos C, Ikonomidis I, Christopoulou-Cokkinou V, Kremastinos DT (2008) The immediate effect of aerobic exercise on haemostatic parameters in patients with recently diagnosed mild to moderate essential hypertension. J Thromb Thrombolysis 25:179–184PubMedCrossRefGoogle Scholar
  64. 64.
    Singh I, Turner AH, Sinclair AJ, Li D, Hawley JA (2007) Effects of gamma-tocopherol supplementation on thrombotic risk factors. Asia Pac J Clin Nutr 16:422–428PubMedGoogle Scholar
  65. 65.
    Singh I, Mok M, Christensen AM, Turner AH, Hawley JA (2008) The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis 18:127–132PubMedCrossRefGoogle Scholar
  66. 66.
    Singh I, Quinn H, Mok M, Southgate RJ, Turner AH, Li D, Sinclair AJ, Hawley JA (2006) The effect of exercise and training status on platelet activation: do cocoa polyphenols play a role? Platelets 17:361–367PubMedCrossRefGoogle Scholar
  67. 67.
    Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD (1993) Effect of strenuous exercise on platelet activation state and reactivity. Circulation 88:1502–1511PubMedCrossRefGoogle Scholar
  68. 68.
    Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger AL III, Michelson AD (2004) Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol 43:2319–2325PubMedCrossRefGoogle Scholar
  69. 69.
    Furman MI, Barnard MR, Krueger LA, Fox ML, Shilale EA, Lessard DM, Marchese PJ, Frelinger AL III, Goldberg R, Michelson AD (2001) Circulating monocyte-platelet a­ggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 38:1002–1006PubMedCrossRefGoogle Scholar
  70. 70.
    Gurbel PA, Kereiakes DJ, Dalesandro MR, Bahr RD, O’Connor CM, Serebruany VL (2000) Role of soluble and platelet-bound P-selectin in discriminating cardiac from ­noncardiac chest pain at presentation in the emergency department. Am Heart J 139: 320–328PubMedGoogle Scholar
  71. 71.
    Langford EJ, Wainwright RJ, Martin JF (1996) Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler Thromb Vasc Biol 16:51–55PubMedCrossRefGoogle Scholar
  72. 72.
    Wiviott SD, Trenk D, Frelinger AL, O’Donoghue M, Neumann FJ, Michelson AD, Angiolillo DJ, Hod H, Montalescot G, Miller DL, Jakubowski JA, Cairns R, Murphy SA, McCabe CH, Antman EM, Braunwald E (2007) Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention: the Prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44 trial. Circulation 116:2923–2932PubMedCrossRefGoogle Scholar
  73. 73.
    McEver RP (1990) Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells 16:73–80PubMedGoogle Scholar
  74. 74.
    McEver RP (2006). P-Selectin/PSGL-1 and other interactions between platelets, leukocytes and endothelium. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, p 231–250Google Scholar
  75. 75.
    Hsu-Lin SC, Berman CL, Furie BC, August D, Furie B (1984) A platelet membrane protein expressed during platelet activation and secretion: studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 259:9121–9126PubMedGoogle Scholar
  76. 76.
    Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the platelet membrane after activation. J Cell Biol 101:880–886PubMedCrossRefGoogle Scholar
  77. 77.
    Furman MI, Benoit SE, Barnard MR, Valeri CR, Borbone ML, Becker RC, Hechtman HB, Michelson AD (1998) Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 31: 352–358PubMedCrossRefGoogle Scholar
  78. 78.
    Furman MI, Kereiakes DJ, Krueger LA, Mueller MN, Pieper K, Broderick TM, Schneider JF, Howard WL, Fox ML, Barnard MR, Frelinger AL III, Michelson AD (2001) Leukocyte-platelet aggregation, platelet surface P-selectin, and platelet surface glycoprotein IIIa after percutaneous coronary intervention: effects of dalteparin or unfractionated heparin in combination with abciximab. Am Heart J 142:790–798PubMedCrossRefGoogle Scholar
  79. 79.
    Michelson AD, Rajasekhar D, Bednarek FJ, Barnard MR (2000) Platelet and platelet-derived microparticle surface factor V/Va binding in whole blood: differences between neonates and adults. Thromb Haemost 84:689–694PubMedGoogle Scholar
  80. 80.
    Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ (1991) Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266:17261–17268PubMedGoogle Scholar
  81. 81.
    Holme PA, Brosstad F, Solum NO (1995) Platelet-derived microvesicles and activated platelets express factor Xa activity. Blood Coagul Fibrinolysis 6:302–310PubMedCrossRefGoogle Scholar
  82. 82.
    Michelson AD (1996) Flow cytometry: a clinical test of platelet function. Blood 87:4925–4936PubMedGoogle Scholar
  83. 83.
    Ginsberg MH, Lightsey A, Kunicki TJ, Kaufmann A, Margurie G, Plow EF (1986) Divalent cation regulation of the surface orientation of platelet membrane glycoprotein IIb. J Clin Invest 78:1103–1111PubMedCrossRefGoogle Scholar
  84. 84.
    Frelinger AL, Furman MI, Linden MD, Li Y, Fox ML, Barnard MR, Michelson AD (2006) Residual arachidonic acid induced platelet activation via an adenosine diphosphate dependent, but cyclooxygenase-1 and cyclooxygenase-2 independent pathway: a 700 patient study of aspirin resistance. Circulation 113:2888–2896PubMedCrossRefGoogle Scholar
  85. 85.
    Frelinger AL III, Jakubowski JA, Li Y, Barnard MR, Fox ML, Linden MD, Sugidachi A, Winters KJ, Furman MI, Michelson AD (2007) The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: influence of other blood cells, calcium, and aspirin. Thromb Haemost 98:192–200PubMedGoogle Scholar
  86. 86.
    Frelinger AL, Jakubowski JJ, Li Y, Barnard MR, Linden MD, Tarnow I, Fox ML, Sugidichi A, Winters KJ, Furman MI, Michelson AD (2008) The active metabolite of prasugrel inhibits adenosine diphosphate- and collagen-stimulated platelet procoagulant activities. J Thromb Haemost 6:359–365PubMedGoogle Scholar
  87. 87.
    Harrison P, Frelinger AL III, Furman MI, Michelson AD (2007) Measuring antiplatelet drug effects in the laboratory. Thromb Res 120:323–336PubMedCrossRefGoogle Scholar
  88. 88.
    Michelson AD, Linden MD, Furman MI, Li Y, Barnard MR, Fox ML, Lau WC, McLaughlin TJ, Frelinger AL (2007) Evidence that pre-existent variability in platelet response to ADP accounts for ‘clopidogrel resistance’. J Thromb Haemost 5:75–81PubMedCrossRefGoogle Scholar
  89. 89.
    Frelinger AL III, Michelson AD (2005) Clopidogrel linking evaluation of platelet response variability to mechanism of action. J Am Coll Cardiol 46:646–647PubMedCrossRefGoogle Scholar
  90. 90.
    Michelson AD (1994) Platelet activation by thrombin can be directly measured in whole blood through the use of the peptide GPRP and flow cytometry: methods and clinical studies. Blood Coagul Fibrinolysis 5:121–131PubMedCrossRefGoogle Scholar
  91. 91.
    Michelson AD, Ellis PA, Barnard MR, Matic GB, Viles AF, Kestin AS (1991) Downregulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, ADP or an in vivo wound. Blood 77:770–779PubMedGoogle Scholar
  92. 92.
    Grau AJ, Ruf A, Vogt A, Lichy C, Buggle F, Patscheke H, Hacke W (1998) Increased fraction of circulating activated platelets in acute and previous cerebrovascular ischemia. Thromb Haemost 80:298–301PubMedGoogle Scholar
  93. 93.
    Cherian P, Hankey GJ, Eikelboom JW, Thom J, Baker RI, McQuillan A, Staton J, Yi Q (2003) Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke 34:2132–2137PubMedCrossRefGoogle Scholar
  94. 94.
    Minamino T, Kitakaze M, Sanada S, Asanuama H, Kurotobi T, Koretsune Y, Fukunami M, Kuzuya T, Hoki N, Hori M (1998) Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide. Circulation 98:1721–1727PubMedCrossRefGoogle Scholar
  95. 95.
    Tschoepe D, Menart-Houtermans B (2002) Diabetes mellitus. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 435–445Google Scholar
  96. 96.
    Tschoepe D, Roesen P, Esser J, Schwippert B, Nieuwenhuis HK, Kehrel B, Gries FA (1991) Large platelets circulate in an active state in diabetes mellitus. Semin Thromb Hemost 17:433–438PubMedCrossRefGoogle Scholar
  97. 97.
    Kawabata K, Nakai S, Miwa M, Sugiura T, Otsuka Y, Shinzato T, Hiki Y, Tomimatsu I, Ushida Y, Hosono F, Maeda K (2002) Platelet GPIIb/IIIa is activated and platelet-leukocyte coaggregates formed in vivo during hemodialysis. Nephron 90:391–400PubMedCrossRefGoogle Scholar
  98. 98.
    Gawaz M, Neumann FJ, Ott I, May A, Schomig A (1996) Platelet activation and coronary stent implantation. Effect of antithrombotic therapy. Circulation 94:279–285PubMedCrossRefGoogle Scholar
  99. 99.
    Tschoepe D, Schultheiss HP, Kolarov P, Schwippert B, Dannehl K, Nieuwenhuis HK, Kehrel B, Strauer B, Gries FA (1993) Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation 88:37–42PubMedCrossRefGoogle Scholar
  100. 100.
    Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW (1996) Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol 28:345–353PubMedCrossRefGoogle Scholar
  101. 101.
    Ault KA, Cannon CP, Mitchell JG, McCahan J, Tracy RP, Novotny WF, Reimann JD, Braunwald E (1999) Platelet activation in patients after an acute coronary syndrome results from the TIMI-12 trial. Thrombolysis in myocardial infarction. J Am Coll Cardiol 33:634–639PubMedCrossRefGoogle Scholar
  102. 102.
    Frelinger AL III, Jakubowski JA, Li Y, Barnard MR, Linden MD, Tarnow I, Fox ML, Sugidachi A, Winters KJ, Furman MI, Michelson AD (2008) The active metabolite of prasugrel inhibits adenosine diphosphate- and collagen-stimulated platelet procoagulant activities. J Thromb Haemost 6:359–365PubMedGoogle Scholar
  103. 103.
    Neumann FJ, Gawaz M, Dickfeld T, Wehinger A, Walter H, Blasini R, Schomig A (1997) Antiplatelet effect of ticlopidine after coronary stenting. J Am Coll Cardiol 29:1515–1519PubMedCrossRefGoogle Scholar
  104. 104.
    Zeiger F, Stephan S, Hoheisel G, Pfeiffer D, Ruehlmann C, Koksch M (2000) P-selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease. Blood Coagul Fibrinolysis 11:723–728PubMedCrossRefGoogle Scholar
  105. 105.
    Peyton BD, Rohrer MJ, Furman MI, Barnard MR, Rodino LJ, Benoit SE, Hechtman HB, Valeri CR, Michelson AD (1998) Patients with venous stasis ulceration have increased monocyte-platelet aggregation. J Vasc Surg 27:1109–1115PubMedCrossRefGoogle Scholar
  106. 106.
    Powell CC, Rohrer MJ, Barnard MR, Peyton BD, Furman MI, Michelson AD (1999) Chronic venous insufficiency is associated with increased platelet and monocyte activation and aggregation. J Vasc Surg 30:844–851PubMedCrossRefGoogle Scholar
  107. 107.
    Ando M, Iwata A, Ozeki Y, Tsuchiya K, Akiba T, Nihei H (2002) Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients. Kidney Int 62:1757–1763PubMedCrossRefGoogle Scholar
  108. 108.
    O’Sullivan BP, Linden MD, Frelinger AL III, Barnard MR, Spencer-Manzon M, Morris JE, Salem RO, Laposata M, Michelson AD (2005) Platelet activation in cystic fibrosis. Blood 105:4635–4641PubMedCrossRefGoogle Scholar
  109. 109.
    Tarnow I, Michelson AD, Frelinger AL III, Linden MD, Li Y, Fox ML, Barnard MR, O’Sullivan BP (2007) Cystic fibrosis heterozygotes do not have increased platelet activation. Thromb Res 121:159–162PubMedCrossRefGoogle Scholar
  110. 110.
    Russworm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Losche W (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17:263–268CrossRefGoogle Scholar
  111. 111.
    Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, Hack CE, Sturk A (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 85:810–820PubMedGoogle Scholar
  112. 112.
    Sevush S, Jy W, Horstman LL, Mao WW, Kolodny L, Ahn YS (1998) Platelet activation in Alzheimer disease. Arch Neurol 55:530–536PubMedCrossRefGoogle Scholar
  113. 113.
    Fateh-Moghadam S, Bocksch W, Ruf A, Dickfeld T, Schartl M, Pogatsa-Murray G, Hetzer R, Fleck E, Gawaz M (2000) Changes in surface expression of platelet membrane glycoproteins and progression of heart transplant vasculopathy. Circulation 102:890–897PubMedCrossRefGoogle Scholar
  114. 114.
    Janes SL, Goodall AH (1994) Flow cytometric detection of circulating activated platelets and platelet hyper-responsiveness in pre-eclampsia and pregnancy. Clin Sci 86:731–739PubMedGoogle Scholar
  115. 115.
    Klein B, Farildi A, Amo-Takyi BK, Heilmann L, Von Templehoff GF, Rath W (2001) Neonatal platelet activation in preeclampsia. Clin Appl Thromb Hemost 7:29–32PubMedCrossRefGoogle Scholar
  116. 116.
    Villmow T, Kemkes-Matthes B, Matzdorff AC (2002) Markers of platelet activation and platelet-leukocyte interaction in patients with myeloproliferative syndromes. Thromb Res 108:139–145PubMedCrossRefGoogle Scholar
  117. 117.
    Klinkhardt U, Bauersachs R, Adams J, Graff J, Lindhoff-Last E, Harder S (2003) Clopidogrel but not aspirin reduced P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease. Clin Pharmacol Ther 73:232–241PubMedCrossRefGoogle Scholar
  118. 118.
    Storey RF, Judge HM, Wilcox RG, Heptinstall S (2002) Inhibition of ADP-induced P-selectin expression and platelet-leukocyte conjugate formation by clopidogrel and the P2Y 12 receptor antagonist AR-C69931MX but not aspirin. Thromb Haemost 88:488–494PubMedGoogle Scholar
  119. 119.
    Klinkhardt U, Graff J, Graff J (2002) Clopidogrel, but not abciximab, reduces platelet leukocyte conjugates and P-selectin expression in a human ex vivo in vitro model. Clin Pharmacol Ther 71:176–185PubMedCrossRefGoogle Scholar
  120. 120.
    Gawaz M, Ruf A, Neumann FJ, Pogatsa-Murray G, Dickfeld T, Zohlnhofer D, Schomig A (1998) Effect of glycoprotein IIb-IIIa receptor antagonism on platelet membrane glycoproteins after coronary stent placement. Thromb Haemost 80:994–1001PubMedGoogle Scholar
  121. 121.
    Konstantopoulos K, Kamat SG, Schafer AI, Banez EI, Jordan R, Kleiman NS, Hellums JD (1995) Shear-induced platelet aggregation is inhibited by in vivo infusion of an anti-glycoprotein IIb/IIIa antibody fragment c7E3 Fab, in patients undergoing coronary angioplasty. Circulation 91:1427–1431PubMedCrossRefGoogle Scholar
  122. 122.
    Quinn M, Deering A, Stewart M, Cox D, Foley B, Fitzgerald D (1999) Quantifying GPIIb/IIIa receptor binding using 2 monoclonal antibodies: discriminating abciximab and small molecular weight antigens. Circulation 99:2231–2238PubMedCrossRefGoogle Scholar
  123. 123.
    Quinn MJ, Aronow HD, Califf RM, Bhatt DL, Sapp S, Kleiman NS, Harrington RA, Kong DF, Kandzari DE, Topol EJ (2004) Aspirin dose and six-month outcome after an acute coronary syndrome. J Am Coll Cardiol 43:972–978PubMedCrossRefGoogle Scholar
  124. 124.
    Warkentin TE, Hayward CP, Boshkov LK, Santos AV, Sheppard JA, Bode AP, Kelton JG (1994) Sera from patients with heparin-induced thrombocytopenia generate platelet-derived microparticles with procoagulant activity: an explanation for the thrombotic complications of heparin-induced thrombocytopenia. Blood 84:3691–3699PubMedGoogle Scholar
  125. 125.
    Aster RH, Curtis BR, Bougie DW, Dunkley S, Greinacher A, Warkentin TE, Chong BH (2006) Thrombocytopenia associated with the use of GPIIb/IIIa inhibitors: position paper of the ISTH working group on thrombocytopenia and GPIIb/IIIa inhibitors. J Thromb Haemost 4:678–679PubMedCrossRefGoogle Scholar
  126. 126.
    Curtis BR, Swyers J, Divgi A, McFarland JG, Aster RH (2002) Thrombocytopenia after second exposure to abciximab is caused by antibodies that recognize abciximab-coated platelets. Blood 99:2054–2059PubMedCrossRefGoogle Scholar
  127. 127.
    Frelinger AL III, Lam SCT, Plow EF, Smith MA, Loftus JC, Ginsberg MH (1988) Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 263:12397–12402PubMedGoogle Scholar
  128. 128.
    Ginsberg MH, Frelinger AL III, Lam SCT, Forsyth J, McMillan R, Plow EF, Shattil SJ (1990) Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein IIb-IIIa with conformation-specific monoclonal antibodies. Blood 76:2017–2023PubMedGoogle Scholar
  129. 129.
    Frelinger AL III, Cohen I, Plow EF, Smith MA, Roberts J, Lam SCT, Ginsberg MH (1990) Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 265:6346–6352PubMedGoogle Scholar
  130. 130.
    Kouns WC, Kirchhofer D, Hadvary P, Edenhofer A, Weller T, Pfenninger G, Baumgartner HR, Jennings LK, Steiner B (1992) Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 80:2539–2547PubMedGoogle Scholar
  131. 131.
    Zamarron C, Ginsberg MH, Plow EF (1990) Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemost 64:41–46PubMedGoogle Scholar
  132. 132.
    Abrams CS, Ellison N, Budzynski AZ, Shattil SJ (1990) Direct detection of activated platelets and platelet-derived microparticles in humans. Blood 75:128–138PubMedGoogle Scholar
  133. 133.
    Gralnick HR, Williams SB, McKeown L, Shafer B, Connaghan GD, Hansmann K, Vail M, Magruder L (1992) Endogenous platelet fibrinogen: its modulation after surface expression is related to size-selective access to and conformational changes in the bound fibrinogen. Br J Haematol 80:347–357PubMedCrossRefGoogle Scholar
  134. 134.
    Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312PubMedCrossRefGoogle Scholar
  135. 135.
    Carmody MW, Ault KA, Mitchell JG, Rote NS, Ng AK (1990) Production of monoclonal antibodies specific for platelet activation antigens and their use in evaluating platelet function. Hybridoma 9:631–641PubMedCrossRefGoogle Scholar
  136. 136.
    Nieuwenhuis HK, van Oosterhout JJ, Rozemuller E, van Iwaarden F, Sixma JJ (1987) Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53,000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 70:838–845PubMedGoogle Scholar
  137. 137.
    Febbraio M, Silverstein RL (1990) Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem 265:18531–18537PubMedGoogle Scholar
  138. 138.
    Silverstein RL, Febbraio M (1992) Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 80:1470–1475PubMedGoogle Scholar
  139. 139.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Bergaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594PubMedCrossRefGoogle Scholar
  140. 140.
    Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T, Sawamura T (2001) Activation-dependent surface expression of LOX-1 in human platelets. Biochem Biophys Res Commun 282:153–158PubMedCrossRefGoogle Scholar
  141. 141.
    Boukerche H, McGregor JL (1988) Characterization of an anti-thrombospondin monoclonal antibody (P8) that inhibits human blood platelet functions. Normal binding of P8 to thrombin-activated Glanzmann thrombasthenic platelets. Eur J Biochem 171:383–392PubMedCrossRefGoogle Scholar
  142. 142.
    Aiken ML, Ginsberg MH, Plow EF (1987) Mechanisms for expression of thrombospondin on the platelet cell surface. Semin Thromb Hemost 13:307–316PubMedCrossRefGoogle Scholar
  143. 143.
    Hayward CP, Smith JW, Horsewood P, Warkentin TE, Kelton JG (1991) p-155, a multimeric platelet protein that is expressed on activated platelets. J Biol Chem 266:7114–7120PubMedGoogle Scholar
  144. 144.
    Hayward CP, Bainton DF, Smith JW, Horsewood P, Stead RH, Podor TJ, Warkentin TE, Kelton JG (1993) Multimerin is found in the alpha-granules of resting platelets and is synthesized by a megakaryocytic cell line. J Clin Invest 91:2630–2639PubMedCrossRefGoogle Scholar
  145. 145.
    Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212PubMedGoogle Scholar
  146. 146.
    Daniel JL, Dangelmaier C, Jin JG, Ashby B, Smith JB, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273:2024–2029PubMedCrossRefGoogle Scholar
  147. 147.
    Jin JG, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:2030–2034PubMedCrossRefGoogle Scholar
  148. 148.
    Leon C, Hechler C, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403:26–30PubMedCrossRefGoogle Scholar
  149. 149.
    Hollopeter G, Jantzen H-M, Vincent D, Li G, England L, Ramakrishnan V, Yang R-B, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207PubMedCrossRefGoogle Scholar
  150. 150.
    Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao XD, Liu YH, Chen GD, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615PubMedCrossRefGoogle Scholar
  151. 151.
    Williams A, Woolkalis MJ, Poncz M, Manning DR, Gewirtz A, Brass LF (1990) Identification of the pertussis toxin-sensitive G proteins in platelets, megakaryocytes and HEL cells. Blood 76:721–730PubMedGoogle Scholar
  152. 152.
    Woulfe D, Yang J, Prevost N, O’Brien P, Brass LF (2002). Signal transduction during the initiation, extension and perpetuation of platelet plug formation. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, p 197–213Google Scholar
  153. 153.
    Smith WL (1992) Prostanoid biosynthesis and the mechanism of action. Am J Physiol 263:F118–F191Google Scholar
  154. 154.
    Santoro SA, Walsh JJ, Staatz WD, Baranski KJ (1991) Distinct determinants on collagen support a2b1 integrin-mediated platelet adhesion and platelet activation. Cell Regul 2:905–913PubMedGoogle Scholar
  155. 155.
    Jung SM, Moroi M (2000) Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin a2b1. J Biol Chem 275:8016–8026PubMedCrossRefGoogle Scholar
  156. 156.
    Clemetson KJ (2002) Platelet receptors. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 65–84Google Scholar
  157. 157.
    Lopez JA, Berndt MC (2002) The GPIb-IX-V complex. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 85–104Google Scholar
  158. 158.
    Hato T, Ginsberg MH, Shattil SJ (2002) Integrin alphallb-beta3. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 105–116Google Scholar
  159. 159.
    Kaywin P, McDonough M, Insel PA, Shattil SJ (1978) Platelet function in essential thrombocythemia: decreased epinephrine responsiveness associated with a deficiency in platelet alpha-adrenergic receptors. N Engl J Med 299:505–509PubMedCrossRefGoogle Scholar
  160. 160.
    Motulsky HJ, Insel PA (1982) [3H]Dihydroergocryptine binding to alpha-adrenergic receptors of human platelets. A reassessment using selective radioligands (3H]prazosin, [3H]yohimbine, and [3H]rauwolscine. Biochem Pharmacol 31:2591–2597PubMedCrossRefGoogle Scholar
  161. 161.
    Kobilka BK, Matsui H, Kobilka TS, Yang Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing, and expression of the gene coding for the human platelet a2-adrenergic receptor. Science 238:650–656PubMedCrossRefGoogle Scholar
  162. 162.
    Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic ­mechanism of receptor activation. Cell 64:1057–1068PubMedCrossRefGoogle Scholar
  163. 163.
    Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694PubMedCrossRefGoogle Scholar
  164. 164.
    Xu W-F, Anderson H, Whitmore TE, Presnell SR, Yee DP, Ching AC, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of the human protease-activated receptor 4. Proc Natl Acad Sci U S A 95:6642–6646PubMedCrossRefGoogle Scholar
  165. 165.
    Michelson AD, Benoit SE, Furman MI, Barnard MR, Nurden P, Nurden AT (1996) The platelet surface expression of glycoprotein V is regulated by two independent mechanisms: proteolysis and a reversible cytoskeletal-mediated redistribution to the surface-connected canalicular system. Blood 87:1396–1408PubMedGoogle Scholar
  166. 166.
    Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S (1996) Two thromboxane A2 receptor isoforms in human platelets—opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest 97:949–956PubMedCrossRefGoogle Scholar
  167. 167.
    Offermanns S, Laugwitz K-L, Spicher K, Schultz G (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A 91:14325–14330CrossRefGoogle Scholar

Copyright information

© Humana Press 2013

Authors and Affiliations

  • Matthew D. Linden
    • 1
  1. 1.Centre for Microscopy, Characterisation and AnalysisUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations