Skip to main content

Genotoxic Assessment of Carbon Nanotubes

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Abstract

Carbon nanotubes are unique one-dimensional macromolecules with promising application in biology and medicine. Since their toxicity is still under debate, here we describe an investigation of genotoxic properties of purified single-walled carbon nanotubes (SWCNT), multiwall carbon nanotubes (MWCNT), and amide-functionalized purified SWCNT. We used two different cell systems: cultured human lymphocytes where we employed cytokinesis-block micronucleus test and human fibroblasts where we investigate the induction of DNA double-strand breaks (DSBs) employing H2AX phosphorylation assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Lin Y, Taylor S, Li H, Fernando SKA, Qu L, Wang W, Gu L, Zhou B, Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–541

    Article  CAS  Google Scholar 

  3. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120

    Article  CAS  Google Scholar 

  4. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  CAS  Google Scholar 

  5. Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16:150–153

    Article  CAS  Google Scholar 

  6. Huang JE, Li XH, Xu JC, Li HL (2003) Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon 41:2731–2736

    Article  CAS  Google Scholar 

  7. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R (2002) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res A 59:499–506

    Article  CAS  Google Scholar 

  8. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100:4984–4989

    Article  CAS  Google Scholar 

  9. Wang J, Liu G, Jan MR, Zhu Q (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5:1000–1004

    Article  CAS  Google Scholar 

  10. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    Article  CAS  Google Scholar 

  11. Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216

    Article  CAS  Google Scholar 

  12. Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4:507–511

    Article  CAS  Google Scholar 

  13. Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  14. Sitharaman B et al (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 31:3915–3917

    Article  Google Scholar 

  15. Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17

    Article  Google Scholar 

  16. Pantarotto D, Singh R, McCarthy D, Erhardt M, Braind JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43:5242–5246

    Article  CAS  Google Scholar 

  17. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube  −  protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  CAS  Google Scholar 

  18. Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed Engl 44:4782–4785

    Article  CAS  Google Scholar 

  19. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Ke PC (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4:2473–2477

    Article  CAS  Google Scholar 

  20. Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and langmuir  −  blodgett films. Langmuir 17:5125–5128

    Article  CAS  Google Scholar 

  21. Banerjee S, Wong SS (2002) Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson’s catalyst. J Am Chem Soc 124:8940–8948

    Article  CAS  Google Scholar 

  22. Pompeo F, Resasco DE (2002) Water ­solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373

    Article  CAS  Google Scholar 

  23. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun 1:193–194

    Article  Google Scholar 

  24. Sun Y, Wilson SR, Schuster DI (2001) High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J Am Chem Soc 123:5348–5349

    Article  CAS  Google Scholar 

  25. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10:961–966

    Article  CAS  Google Scholar 

  26. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  27. Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE (2003) Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J Phys Chem B 107:13357–13367

    Article  CAS  Google Scholar 

  28. Yurekli K, Mitchell CA, Krishnamoorti R (2004) Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126:9902–9903

    Article  CAS  Google Scholar 

  29. O’Connell MJ et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  30. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  31. Rao R, Lee J, Lu Q, Keskar G, Freedman KO, Floyd WC, Rao AM, Ke PC (2004) Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Appl Phys Lett 85:4228–4230

    Article  CAS  Google Scholar 

  32. Strano MS, Zheng M, Jagota A, Onoa GB, Heller DA, Barone PW, Usrey ML (2004) Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett 4:543–550

    Article  CAS  Google Scholar 

  33. Wang H, Zhou W, Ho DL, Winey KI, Fischer JE, Glinka CJ, Hobbie EK (2004) Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Lett 4:1789–1793

    Article  CAS  Google Scholar 

  34. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  35. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  CAS  Google Scholar 

  36. Zhu Y, Li WX (2008) Cytotoxicity of carbon nanotubes. Sci China Ser B Chem 51(11):1021–1029

    Article  CAS  Google Scholar 

  37. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  Google Scholar 

  38. Fenech M (2003) Human micron nucleus project. Mutat Res 534(1–2):65–75

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science of the Republic of Serbia, under Project No. III 45005 and Project No. 173046.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nešković, O. et al. (2013). Genotoxic Assessment of Carbon Nanotubes. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics