Skip to main content

Interactions of Nanoparticles with Proteins: Determination of Equilibrium Constants

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

The behavior of nanoparticles towards proteins is an important aspect across wide areas of nanotoxicology and nanomedicine. In this chapter, we describe a procedure to study the adsorption of proteins onto nanoparticle surfaces. Circular dichroism (CD) spectroscopy is utilized to quantify the amount of free protein in a solution, and the experimental information is evaluated to derive equilibrium constants for the protein adsorption/desorption equilibrium. These equilibrium constants are comparable parameters in describing the interactions between proteins and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watari F, Takashi N, Yokoyama A, Uo M, Akasaka M, Sato Y, Abe S, Totsuka Y, Tohji K (2009) Material nanosizing effect on living organism: non-specific, biointeractive, physical size effects. J R Soc Interface 6(S3):S371–S388

    Article  CAS  Google Scholar 

  2. Fillafer C, Friedl DS, Ilyes AK, Wirth M, Gabor F (2009) Bionanoprobes to study particle-cell interactions. J Nanosci Nanotechnol 9(5):3239–3245

    Article  CAS  Google Scholar 

  3. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2010) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl 1):S5–S13

    Article  CAS  Google Scholar 

  4. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluoresence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  Google Scholar 

  5. Treuel L, Malissek M, Gebauer JS, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem 11(14):3093–3099

    Article  CAS  Google Scholar 

  6. Zhou HS, Aoki S, Honma I, Hirasawa M, Nagamune T, Komiyama H (1997) Conformational change of protein cytochrome b-562 adsorbed on colloidal gold particles; absorption band shift. Chem Commun:605–606.

    Google Scholar 

  7. Jiang X, Jiang J, Jin Y, Wang E, Dong S (2005) Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules 6(1):46–53

    Article  CAS  Google Scholar 

  8. Aubin-Tam ME, Hamad-Schifferli K (2005) Gold nanoparticle-cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21(26):12080–12084

    Article  CAS  Google Scholar 

  9. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  CAS  Google Scholar 

  10. Medintz IL, Konnert JH, Clapp AR, Stanish I, Twing ME, Mattoussi H, Mauro JM, Deschamps JR (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci U S A 101(26):9612–9617

    Article  CAS  Google Scholar 

  11. Verma A, Rotello VM (2005) Surface recognition of biomacromolecules using nanoparticle receptors. Chem Commun:303–312

    Google Scholar 

  12. Baron MH, Revault M, Servagent-Noinville S, Abadie J, Qui-Quampoix HJ (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Colloid Interface Sci 214(2):319–332

    Article  CAS  Google Scholar 

  13. Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299(1):56–69

    Article  CAS  Google Scholar 

  14. Fasman GD (ed) (1996) Circular dichroism and the conformational analysis of biomolecules. Springer, New York

    Google Scholar 

  15. Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism—principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  16. Sreerama N, Woody RW (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13(1):100–112

    Article  CAS  Google Scholar 

  17. Perczel A, Fasman GD (1992) Convex constraint analysis: a natural deconvolution of circular dirchroism curves of proteins. Protein Eng 4(6):669–679

    Article  Google Scholar 

  18. Lu ZX, Cui T, Shi QL (1987) Application of circular dichroism and optical rotatory dispersion in molecular biology, 1st edn. Science Press, Beijing

    Google Scholar 

  19. Alder AJ, Greenfield NJ, Fasman GD (1973) Dichroism and optical rotary dispersion of proteins and polypeptides. Methods Enzymol 27:675–735

    Article  Google Scholar 

  20. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8(10):4108

    Article  CAS  Google Scholar 

  21. Boehm G (1996) New approaches in molecular structure prediction. Biophys Chem 59(1–2):1–32

    Article  CAS  Google Scholar 

  22. Boehm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  CAS  Google Scholar 

  23. (RCSB protein data bank) www.pdb.org.

  24. (swissprot) www.expasy.org.

  25. Wallance BA, Janes RW (eds) (2009) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy, vol 1. Ios, Amsterdam

    Google Scholar 

  26. van de Hulst H (1981) Light scattering by small particles. Dover, New York

    Google Scholar 

  27. Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  28. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  29. Scherer C, Utech S, Scholz S, Noshov S, Kindvater P, Graf R, Thünemann AF, Maskos M (2010) Synthesis, characterization and fine-tuning of bimodal poly(organosiloxane) nanoparticles. Polymer 51:5432–5439

    Article  CAS  Google Scholar 

  30. Scherer C, Noskov S, Utech S, Bantz C, Mueller W, Krohne K, Maskos M (2010) Characterization of polymer nanoparticles by asymmetrical flow field flow fraction (AF-FFF). J Nanosci Nanotechnol 10(10):6834–6839

    Article  CAS  Google Scholar 

  31. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  CAS  Google Scholar 

  32. Gebauer JS, Treuel L (2011) Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354(2):546–554

    Article  CAS  Google Scholar 

  33. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35(3):307–312

    Article  CAS  Google Scholar 

  34. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  35. Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5):2714–2721

    Article  CAS  Google Scholar 

  36. Xiao Q, Huang S, Liu Y, Tian F, Zhu J (2009) Thermodynamics, conformation and active sites of the binding of Zn–Nd hetero-bimetallic schiff base to bovine serum albumin. J Fluoresc 19(2):317–326

    Article  CAS  Google Scholar 

  37. Ying L, WenYing H, Jianniao T, Jianghong T, Zhide H, Xingguo C (2005) The effect of berberine on the secondary structure of human serum albumin. J Mol Struct 743(1–3):79–84

    Google Scholar 

  38. Wang Y, Sun H, Wang H, Liu Y (2001) In vitro interaction of nicotine and hemoglobin under liver cell metabolizing condition. Chinese Chem Lett 12(5):449–452

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Treuel, L., Malissek, M. (2013). Interactions of Nanoparticles with Proteins: Determination of Equilibrium Constants. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics