Skip to main content

Nanodiscs in the Studies of Membrane-Bound Cytochrome P450 Enzymes

  • Protocol
  • First Online:
Cytochrome P450 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 987))

Abstract

Cytochromes P450 from eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic-metabolizing human cytochrome P450 CYP3A4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson DR (2009) The cytochrome p450 homepage. Human Genomics 4:59–65

    CAS  PubMed  Google Scholar 

  2. Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814:14–18

    Article  CAS  PubMed  Google Scholar 

  3. Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD (2010) Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451

    Article  CAS  PubMed  Google Scholar 

  4. Bayburt TH, Sligar SG (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc Natl Acad Sci U S A 99:6725–6730

    Article  CAS  PubMed  Google Scholar 

  5. Berka K, Hendrychova T, Anzenbacher P, Otyepka M (2011) Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J Phys Chem A 115:11248–11255

    Article  CAS  PubMed  Google Scholar 

  6. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7:e1002152

    Article  CAS  PubMed  Google Scholar 

  7. Denisov IG, Shih AY, Sligar SG (2012) Structural differences between soluble and membrane bound cytochromes P450. J Inorg Biochem 108:150–158

    Article  CAS  PubMed  Google Scholar 

  8. Mast N, Liao WL, Pikuleva IA, Turko IV (2009) Combined use of mass spectrometry and heterologous expression for identification of membrane-interacting peptides in cytochrome P450 46A1 and NADPH-cytochrome P450 oxidoreductase. Arch Biochem Biophys 483:81–89

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD (2006) Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281:5973–5981

    Article  CAS  PubMed  Google Scholar 

  10. Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  PubMed  Google Scholar 

  11. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  12. Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG (2005) Thermotropic phase transition in soluble nanoscale lipid bilayers. J Phys Chem B 109:15580–15888

    Article  CAS  PubMed  Google Scholar 

  13. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  PubMed  Google Scholar 

  14. Grinkova YV, Denisov IG, Sligar SG (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23:843–848

    Article  CAS  PubMed  Google Scholar 

  15. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–1727

    Article  CAS  PubMed  Google Scholar 

  16. Denisov IG, Sligar SG (2011) Cytochromes P 450 in nanodiscs. Biochim Biophys Acta 1814:223–229

    Article  CAS  PubMed  Google Scholar 

  17. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  PubMed  Google Scholar 

  18. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  PubMed  Google Scholar 

  19. Sligar SG (2003) Finding a single-molecule solution for membrane proteins. Biochem Biophys Res Commun 312:115–119

    Article  CAS  PubMed  Google Scholar 

  20. Nath A, Trexler AJ, Koo P, Miranker AD, Atkins WM, Rhoades E (2010) Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol 472:89–117

    Article  CAS  PubMed  Google Scholar 

  21. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  CAS  PubMed  Google Scholar 

  22. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  CAS  PubMed  Google Scholar 

  23. Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, Sunahara RK (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  CAS  PubMed  Google Scholar 

  24. Tsukamoto H, Sinha A, DeWitt M, Farrens DL (2010) Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 399:501–511

    Article  CAS  PubMed  Google Scholar 

  25. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang C-C, Tesmer JJG, Ernst OP, Sligar SG, Gurevich VV (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  CAS  PubMed  Google Scholar 

  26. Tsukamoto H, Szundi I, Lewis JW, Farrens DL, Kliger DS (2011) Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50:5086–5091

    Article  CAS  PubMed  Google Scholar 

  27. Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430:218–228

    Article  CAS  PubMed  Google Scholar 

  28. Davydov DR, Fernando H, Baas BJ, Sligar SG, Halpert JR (2005) Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry 44:13902–13913

    Article  CAS  PubMed  Google Scholar 

  29. Denisov IG, Baas BJ, Grinkova YV, Sligar SG (2007) Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem 282:7066–7076

    Article  CAS  PubMed  Google Scholar 

  30. Denisov IG, Grinkova YV, Baas BJ, Sligar SG (2006) The ferrous-dioxygen intermediate in human cytochrome P450 3A4: substrate dependence of formation and decay kinetics. J Biol Chem 281:23313–23318

    Article  CAS  PubMed  Google Scholar 

  31. Denisov IG, Grinkova YV, McLean MA, Sligar SG (2007) The one-electron autoxidation of human cytochrome P450 3A4. J Biol Chem 282:26865–26873

    Article  CAS  PubMed  Google Scholar 

  32. Frank DJ, Denisov IG, Sligar SG (2009) Mixing apples and oranges: analysis of heterotropic cooperativity in cytochrome P450 3A4. Arch Biochem Biophys 488:146–152

    Article  CAS  PubMed  Google Scholar 

  33. Frank DJ, Denisov IG, Sligar SG (2011) Analysis of heterotropic cooperativity in cytochrome P450 3A4 using α-naphthoflavone and testosterone. J Biol Chem 286:5540–5545

    Article  CAS  PubMed  Google Scholar 

  34. Gantt SL, Denisov IG, Grinkova YV, Sligar SG (2009) The critical iron-oxygen intermediate in human aromatase. Biochem Biophys Res Commun 387:169–173

    Article  CAS  PubMed  Google Scholar 

  35. Grinkova YV, Denisov IG, Waterman MR, Arase M, Kagawa N, Sligar SG (2008) The ferrous-oxy complex of human aromatase. Biochem Biophys Res Commun 372:379–382

    Article  CAS  PubMed  Google Scholar 

  36. Mak PJ, Denisov IG, Grinkova YV, Sligar SG, Kincaid JR (2011) Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian cytochrome P450. J Am Chem Soc 133:1357–1366

    Article  CAS  PubMed  Google Scholar 

  37. Nath A, Koo PK, Rhoades E, Atkins WM (2008) Allosteric effects on substrate dissociation from cytochrome P450 3A4 in nanodiscs observed by ensemble and single-molecule fluorescence spectroscopy. J Am Chem Soc 130:15746–15747

    Article  CAS  PubMed  Google Scholar 

  38. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    Article  CAS  PubMed  Google Scholar 

  39. Shenkarev ZO, Lyukmanova EN, Solozhenkin OI, Gagnidze IE, Nekrasova OV, Chupin VV, Tagaev AA, Yakimenko ZA, Ovchinnikova TV, Kirpichnikov MP, Arseniev AS (2009) Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry (Mosc) 74:756–765

    Article  CAS  Google Scholar 

  40. Shenkarev ZO, Paramonov AS, Lyukmanova EN, Shingarova LN, Yakimov SA, Dubinnyi MA, Chupin VV, Kirpichnikov MP, Blommers MJJ, Arseniev AS (2010) NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J Am Chem Soc 132:5630–5637

    Article  CAS  PubMed  Google Scholar 

  41. Yu TY, Raschle T, Hiller S, Wagner G (2011) Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta DOI: 10.1016/j.bbamem.2011.11.012

  42. Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26:1995–2004

    Article  CAS  PubMed  Google Scholar 

  43. Alvarez FJD, Orelle C, Davidson AL (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132:9513–9515

    Article  CAS  PubMed  Google Scholar 

  44. Dalal K, Duong F (2010) Reconstitution of the SecY translocon in nanodiscs. Methods Mol Biol 619:145–156

    Article  CAS  PubMed  Google Scholar 

  45. Kawai T, Caaveiro JM, Abe R, Katagiri T, Tsumoto K (2011) Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett 585:3533–3537

    Article  CAS  PubMed  Google Scholar 

  46. Ritchie TK, Kwon H, Atkins WM (2011) Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J Biol Chem 286:39489–39496

    Article  CAS  PubMed  Google Scholar 

  47. Zou P, McHaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron–electron resonance and nanoscale bilayers. Biophys J 98:L18–20

    Article  CAS  PubMed  Google Scholar 

  48. Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A 103:11509–11514

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Hazelbauer GL (2011) Core unit of chemotaxis signaling complexes. Proc Natl Acad Sci U S A A108:9390–9395

    Article  Google Scholar 

  50. Frauenfeld J, Gumbart J, van der Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K, Beckmann R (2011) Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621

    Article  CAS  PubMed  Google Scholar 

  51. Katayama H, Wang J, Tama F, Chollet L, Gogol EP, Collier RJ, Fisher MT (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 107:3453–3457, S3453/3451–S3453/3453

    Article  CAS  PubMed  Google Scholar 

  52. Pandit A, Shirzad-Wasei N, Wlodarczyk LM, van Roon H, Boekema EJ, Dekker JP, de Grip WJ (2011) Assembly of the major light-harvesting complex II in lipid nanodiscs. Biophys J 101:2507–2515

    Article  CAS  PubMed  Google Scholar 

  53. Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH (2010) Recreation of the terminal events in physiological integrin activation. J Cell Biol 188:157–173

    Article  CAS  PubMed  Google Scholar 

  54. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Prot Sci 12:2476–2481

    Article  CAS  Google Scholar 

  55. Ranaghan MJ, Schwall CT, Alder NN, Birge RR (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 133:18318–18327

    Article  CAS  PubMed  Google Scholar 

  56. Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG (2006) Functional reconstitution of beta 2-adrenergic receptors utilizing self-assembling nanodisc technology. BioTechniques 40:601–602, 604, 606, 608, 610, 612

    Article  CAS  PubMed  Google Scholar 

  57. Das A, Zhao J, Schatz GC, Sligar SG, Van Duyne RP (2009) Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal Chem 81:3754–3759

    Article  CAS  PubMed  Google Scholar 

  58. Cruz F, Edmondson DE (2007) Kinetic properties of recombinant MAO-A on incorporation into phospholipid nanodisks. J Neural Transm 114:699–702

    Article  CAS  PubMed  Google Scholar 

  59. Ishmukhametov R, Hornung T, Spetzler D, Frasch WD (2010) Direct observation of stepped proteolipid ring rotation in E. coli F0F1-ATP synthase. EMBO J 29:3911–3923

    Article  CAS  PubMed  Google Scholar 

  60. Mi L-Z, Grey MJ, Nishida N, Walz T, Lu C, Springer TA (2008) Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Biochemistry 47:10314–10323

    Article  CAS  PubMed  Google Scholar 

  61. Morrissey JH, Pureza V, Davis-Harrison RL, Sligar SG, Ohkubo YZ, Tajkhorshid E (2008) Blood clotting reactions on nanoscale phospholipid bilayers. Thromb Res 122:S23–S26

    Article  CAS  PubMed  Google Scholar 

  62. Shaw AW, Pureza VS, Sligar SG, Morrissey JH (2007) The local phospholipid environment modulates the activation of blood clotting. J Biol Chem 282:6556–6563

    Article  CAS  PubMed  Google Scholar 

  63. Johnson EF, Stout CD (2005) Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338:331–336

    Article  CAS  PubMed  Google Scholar 

  64. Mast N, White MA, Bjorkhem I, Johnson EF, Stout CD, Pikuleva IA (2008) Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc Natl Acad Sci U S A 105:9546–9551

    Article  CAS  PubMed  Google Scholar 

  65. Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P 450 3A4. J Am Chem Soc 129:13778–13779

    Article  CAS  PubMed  Google Scholar 

  66. Das A, Sligar SG (2009) Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48:12104–12112

    Article  CAS  PubMed  Google Scholar 

  67. Grinkova YV, Denisov IG, Sligar SG (2010) Functional reconstitution of monomeric CYP3A4 with multiple cytochrome P450 reductase molecules in Nanodiscs. Biochem Biophys Res Commun 398:194–198

    Article  CAS  PubMed  Google Scholar 

  68. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1759

    Article  CAS  Google Scholar 

  69. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  70. Cevc G (1993) Phospholipids handbook. Marcel Dekker, Inc., New York, p 988

    Google Scholar 

  71. Chougnet A, Grinkova Y, Ricard D, Sligar S, Woggon W-D (2007) Fluorescent probes for rapid screening of potential drug-drug interactions at the CYP3A4 level. ChemMedChem 2:717–724

    Article  CAS  PubMed  Google Scholar 

  72. Davydov DR, Baas BJ, Sligar SG, Halpert JR (2007) Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry 46:7852–7864

    Article  CAS  PubMed  Google Scholar 

  73. Nath A, Grinkova YV, Sligar SG, Atkins WM (2007) Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes. J Biol Chem 282:28309–28320

    Article  CAS  PubMed  Google Scholar 

  74. Davydov DR, Sineva EV, Sistla S, Davydova NY, Frank DJ, Sligar SG, Halpert JR (2010) Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. Biochim Biophys Acta 1797:378–390

    Article  CAS  PubMed  Google Scholar 

  75. Luthra A, Denisov IG, Sligar SG (2011) Temperature derivative spectroscopy to monitor the autoxidation decay of cytochromes P450. Anal Chem 83:5394–5399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the valuable contribution to development of these methods made by T. H. Bayburt, B. J. Baas, M. A. McLean, and other members of the Sligar lab, whose works are cited in the list of references. This work was supported by NIH grants GM31756 and GM33775 to S.G. Sligar.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Luthra, A., Gregory, M., Grinkova, Y.V., Denisov, I.G., Sligar, S.G. (2013). Nanodiscs in the Studies of Membrane-Bound Cytochrome P450 Enzymes. In: Phillips, I., Shephard, E., Ortiz de Montellano, P. (eds) Cytochrome P450 Protocols. Methods in Molecular Biology, vol 987. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-321-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-321-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-320-6

  • Online ISBN: 978-1-62703-321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics