Skip to main content

Validating Pharmacological Disruption of Protein–Protein Interactions by Acceptor Photobleaching FRET Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

Proteins are the major targets of drug discovery and many of the new drugs are designed to exert their effect by disrupting protein-protein interactions. Validation of the inhibition of molecular interactions is generally done by biochemical methods, however, these are often not feasible when the interaction is not stable enough. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining direct molecular interactions between two molecules in the cell membrane or inside cells in their natural state. Although originally established as a flow cytometric approach, FRET has been adapted for microscopy, allowing for analysis of sub-cellular co-localization at the single cell level. In this chapter, we provide theoretical introduction to the phenomenon of FRET, and a protocol - including labeling techniques, measurement, and evaluation of microscopy images - of the simplest microscopic FRET approach, acceptor photobleaching FRET. This technique is generally usable for studying protein interactions and requires only a standard confocal laser scanning microscope. To demonstrate the value of image based FRET for testing pharmacological disruption of protein-protein interactions, we show how inhibition of the hetero-dimerization of ErbB2 and ErbB1 by the humanized monoclonal antibody pertuzumab can be validated using this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Förster T (1946) Energiewanderung und fluoreszenz. Naturwissenschaften 6:166–175

    Article  Google Scholar 

  2. Clegg RM (2002) FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol 82:177–179

    PubMed  CAS  Google Scholar 

  3. Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10:409–416

    Article  PubMed  CAS  Google Scholar 

  4. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE. 331:re2.

    Google Scholar 

  5. Vereb G, Matkó J, Szöllősi J (2009) Cytometry of fluorescence resonance energy transfer. In: Darzynkiewicz Z, Robinson JP, Roederer M (eds) Essential cytometry methods. Elsevier, Oxford, pp 55–108

    Google Scholar 

  6. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Nat Acad Sci USA 58:719–726

    Article  CAS  Google Scholar 

  7. Vereb G, Nagy P, Szöllősi J (2011) Flow cytometric FRET analysis of protein interaction. Methods Mol Biol 699:371–392

    Article  PubMed  CAS  Google Scholar 

  8. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  9. Fazekas Z, Petrás M, Fábián A et al (2008) Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy. Cytometry A 73:209–219

    PubMed  Google Scholar 

  10. Bastiaens PIH, Jovin TM (1998) Fluorescence resonance energy transfer microscopy. In: Celis JE (ed) Cell biology: a laboratory handbook, 2nd edn. Academic Press, New York, pp 136–146

    Google Scholar 

  11. Szentesi G, Vereb G, Horváth G et al (2005) Computer program for analyzing donor photobleaching FRET image series. Cytometry A 67A:119–128

    Article  Google Scholar 

  12. Sun Y, Wallrabe H, Seo SA et al (2010) FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chemphyschem 12:462–474

    Article  PubMed  Google Scholar 

  13. Zal T (2008) Visualization of protein interactions in living cells. Adv Exp Med Biol 640:183–197

    Article  PubMed  CAS  Google Scholar 

  14. Buranachai C, Kamiyama D, Chiba A et al (2008) Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis. J Fluoresc 18:929–942

    Article  PubMed  CAS  Google Scholar 

  15. Vereb G, Matkó J, Szöllősi J (2004) Cytometry of fluorescence resonance energy transfer. Methods Cell Biol 75:105–152

    Article  PubMed  CAS  Google Scholar 

  16. Mocanu MM, Fazekas Z, Petrás M et al (2005) Associations of ErbB2, beta1-integrin and lipid rafts on Herceptin (Trastuzumab) resistant and sensitive tumor cell lines. Cancer Lett 227:201–212

    Article  PubMed  CAS  Google Scholar 

  17. Friedlander E, Barok M, Szöllősi J et al (2008) ErbB-directed immunotherapy: antibodies in current practice and promising new agents. Immunol Lett 116:126–140

    Article  PubMed  CAS  Google Scholar 

  18. Citri A, Gan J, Mosesson Y et al (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170

    Article  PubMed  CAS  Google Scholar 

  19. Zsebik B, Citri A, Isola J et al (2006) Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1. Immunol Lett 104:146–155

    Article  PubMed  CAS  Google Scholar 

  20. Franklin MC, Carey KD, Vajdos FF et al (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328

    Article  PubMed  CAS  Google Scholar 

  21. Agus DB, Gordon MS, Taylor C et al (2005) Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 23:2534–2543

    Article  PubMed  CAS  Google Scholar 

  22. Horváth G, Petrás M, Szentesi G et al (2005) Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 65:148–157

    PubMed  Google Scholar 

  23. Sebestyén Z, Nagy P, Horváth G et al (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48:124–135

    Article  PubMed  Google Scholar 

  24. Roszik J, Szöllősi J, Vereb G (2008) AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics 9:346

    Article  PubMed  Google Scholar 

  25. AccPbFRET plugin, http://www.biophys.dote.hu/accpbfret/.

  26. Alvarez-Curto E, Pediani JD, Milligan G (2010) Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 398:167–180

    Article  PubMed  CAS  Google Scholar 

  27. Cha B, Zhu XC, Chen W et al (2010) NHE3 mobility in brush borders increases upon NHERF2-dependent stimulation by lyophosphatidic acid. J Cell Sci 123:2434–2443

    Article  PubMed  CAS  Google Scholar 

  28. Goh WI, Lim KB, Sudhaharan T et al (2011) mDia1 and WAVE2 interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 287(7):4702–4714

    Article  PubMed  Google Scholar 

  29. Hernandez FP, Sandri-Goldin RM (2010) Herpes simplex virus 1 regulatory protein ICP27 undergoes a head-to-tail intramolecular interaction. J Virol 84:4124–4135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by the following grants: Hungarian National Research Fund K75752 and NK101337; Hungarian National Development Agency TAMOP-4.2.1/B-09/1/KONV-2010-0007 and 4.2.2/A-11/1/KONV-2012-0025; Baross Gabor programme (REG-EA-09-1-2009-0010) and ETT 362-01/2009 grants.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Roszik, J., Tóth, G., Szöllősi, J., Vereb, G. (2013). Validating Pharmacological Disruption of Protein–Protein Interactions by Acceptor Photobleaching FRET Imaging. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics