Advertisement

Erythropoietin as a Neuroprotectant for Neonatal Brain Injury: Animal Models

  • Christopher M. Traudt
  • Sandra E. Juul
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 982)

Abstract

Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others.

Key words

Vannucci model Erythropoietin Hypoxic-ischemia Common carotid artery ligation 

References

  1. 1.
    Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, Strohm B, Thoresen M, Whitelaw A, Azzopardi D (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363PubMedCrossRefGoogle Scholar
  2. 2.
    Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 24:1085–1104PubMedCrossRefGoogle Scholar
  3. 3.
    Tyson JE, Parikh NA, Langer J, Green C, Higgins RD (2008) Intensive care for extreme prematurity—moving beyond gestational age. N Engl J Med 358:1672–1681PubMedCrossRefGoogle Scholar
  4. 4.
    Wang B, Chen Y, Zhang J, Li J, Guo Y, Hailey D (2008) A preliminary study into the economic burden of cerebral palsy in China. Health Policy 87:223–234PubMedCrossRefGoogle Scholar
  5. 5.
    Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12:129–140PubMedCrossRefGoogle Scholar
  6. 6.
    Kapellou O, Counsell SJ, Kennea N, Dyet L, Saeed N, Stark J, Maalouf E, Duggan P, Ajayi-Obe M, Hajnal J, Allsop JM, Boardman J, Rutherford MA, Cowan F, Edwards AD (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3:e265PubMedCrossRefGoogle Scholar
  7. 7.
    Stewart WB, Ment LR, Schwartz M (1997) Chronic postnatal hypoxia increases the numbers of cortical neurons. Brain Res 760:17–21PubMedCrossRefGoogle Scholar
  8. 8.
    Ment LR, Schwartz M, Makuch RW, Stewart WB (1998) Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res 111:197–203PubMedCrossRefGoogle Scholar
  9. 9.
    Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ (1995) A new model of neonatal stroke: reversible middle cerebral artery occlusion in the rat pup. Pediatr Neurol 12:191–196PubMedCrossRefGoogle Scholar
  10. 10.
    Sola A, Rogido M, Lee BH, Genetta T, Wen TC (2005) Erythropoietin after focal cerebral ischemia activates the janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 57(4):481–487PubMedCrossRefGoogle Scholar
  11. 11.
    Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141PubMedCrossRefGoogle Scholar
  12. 12.
    Vannucci RC, Lyons DT, Vasta F (1988) Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke 19:245–250PubMedCrossRefGoogle Scholar
  13. 13.
    Yager JY, Brucklacher RM, Vannucci RC (1992) Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol 262:H672–H677PubMedGoogle Scholar
  14. 14.
    Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90:375–386PubMedCrossRefGoogle Scholar
  15. 15.
    Vannicci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, Vannucci SJ (1999) Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 55:158–163CrossRefGoogle Scholar
  16. 16.
    Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P, Obladen M, Ikonomidou C, Buhrer C (2005) Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 57:50–59PubMedCrossRefGoogle Scholar
  17. 17.
    Saugstad OD (1990) Oxygen toxicity in the neonatal period. Acta Paediatr Scand 79:881–892PubMedCrossRefGoogle Scholar
  18. 18.
    Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Halvorsen B, Saugstad OD (2004) Resuscitation with 100% O2 increases cerebral injury in hypoxemic piglets. Pediatr Res 56:783–790PubMedCrossRefGoogle Scholar
  19. 19.
    Ment LR, Stewart WB, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, Madri JA (1997) Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Brain Res Dev Brain Res 100:52–61PubMedCrossRefGoogle Scholar
  20. 20.
    Ment LR, Stewart WB, Duncan CC, Pitt BR, Cole JS (1986) Beagle puppy model of perinatal cerebral infarction. Regional cerebral prostaglandin changes during acute hypoxemia. J Neurosurg 65:851–855PubMedCrossRefGoogle Scholar
  21. 21.
    Adcock LM, Yamashita Y, Goddard-Finegold J, Smith CV (1996) Cerebral hypoxia-ischemia increases microsomal iron in newborn piglets. Metab Brain Dis 11:359–367PubMedCrossRefGoogle Scholar
  22. 22.
    Stave U (1965) Age-dependent changes of metabolism. II. Influences of hypoxia on tissue enzyme patterns of newborn and adult rabbits. Biol Neonat 8:114–130PubMedCrossRefGoogle Scholar
  23. 23.
    Vannucci RC (1993) Experimental models of perinatal hypoxic-ischemic brain damage. APMIS Suppl 40:89–95PubMedGoogle Scholar
  24. 24.
    Myers RE (1975) Four patterns of perinatal brain damage and their conditions of occurrence in primates. Adv Neurol 10:223–234PubMedGoogle Scholar
  25. 25.
    Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49PubMedCrossRefGoogle Scholar
  26. 26.
    Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516PubMedGoogle Scholar
  27. 27.
    Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT (2007) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282:25875–25883PubMedCrossRefGoogle Scholar
  28. 28.
    Juul SE, Yachnis AT, Rojiani AM, Christensen RD (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 2:148–158PubMedCrossRefGoogle Scholar
  29. 29.
    Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531PubMedCrossRefGoogle Scholar
  30. 30.
    Juul S (2002) Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl 91:36–42PubMedCrossRefGoogle Scholar
  31. 31.
    McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26:103–111PubMedCrossRefGoogle Scholar
  32. 32.
    Xiong T, Qu Y, Mu D, Ferriero D (2011) Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci 29(6):583–591PubMedCrossRefGoogle Scholar
  33. 33.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737PubMedCrossRefGoogle Scholar
  34. 34.
    Wallach I, Zhang J, Hartmann A, van Landeghem FK, Ivanova A, Klar M, Dame C (2009) Erythropoietin-receptor gene regulation in neuronal cells. Pediatr Res 65:619–624PubMedCrossRefGoogle Scholar
  35. 35.
    Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H (2002) Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 44:391–403PubMedCrossRefGoogle Scholar
  36. 36.
    Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60:386–392PubMedGoogle Scholar
  37. 37.
    Chong ZZ, Kang JQ, Maiese K (2003) Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol 138:1107–1118PubMedCrossRefGoogle Scholar
  38. 38.
    Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647PubMedCrossRefGoogle Scholar
  39. 39.
    Genc K, Genc S, Baskin H, Semin I (2006) Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res 55:33–38PubMedGoogle Scholar
  40. 40.
    Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Fontana E, Gorio A, De Biasi S (2008) Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury. Neuroscience 151:452–466PubMedCrossRefGoogle Scholar
  41. 41.
    Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, Heumann R, Buhrer C, Ikonomidou C, Hansen HH (2004) Erythropoietin protects the developing brain against N-methyl-d-aspartate receptor antagonist neurotoxicity. Neurobiol Dis 15:177–187PubMedCrossRefGoogle Scholar
  42. 42.
    Wang L, Chopp M, Gregg SR, Zhang RL, Teng H, Jiang A, Feng Y, Zhang ZG (2008) Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab 28:1361–1368PubMedCrossRefGoogle Scholar
  43. 43.
    Bocker-Meffert S, Rosenstiel P, Rohl C, Warneke N, Held-Feindt J, Sievers J, Lucius R (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026PubMedGoogle Scholar
  44. 44.
    Wang KK, Larner SF, Robinson G, Hayes RL (2006) Neuroprotection targets after traumatic brain injury. Curr Opin Neurol 19:514–519PubMedCrossRefGoogle Scholar
  45. 45.
    Xiong Y, Mahmood A, Lu D, Qu C, Kazmi H, Goussev A, Zhang ZG, Noguchi CT, Schallert T, Chopp M (2008) Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res 1230:247–257PubMedCrossRefGoogle Scholar
  46. 46.
    Juul SE, McPherson RJ, Farrell FX, Jolliffe L, Ness DJ, Gleason CA (2004) Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate 85:138–144PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, Ji L, Guo X, Xiong H, Simbruner G, Blomgren K, Wang X (2009) Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 124:e218–e226PubMedCrossRefGoogle Scholar
  48. 48.
    Kellert BA, McPherson RJ, Juul SE (2007) A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res 61:451–455PubMedCrossRefGoogle Scholar
  49. 49.
    Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM (2009) Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 31:403–411PubMedCrossRefGoogle Scholar
  50. 50.
    Juul SE, McPherson RJ, Bammler TK, Wilkerson J, Beyer RP, Farin FM (2008) Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model. Dev Neurosci 30:231–242PubMedCrossRefGoogle Scholar
  51. 51.
    Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael ST (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269–1274PubMedCrossRefGoogle Scholar
  52. 52.
    Weber A, Dzietko M, Berns M, Felderhoff-Mueser U, Heinemann U, Maier RF, Obladen M, Ikonomidou C, Buhrer C (2005) Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis 20:594–600PubMedCrossRefGoogle Scholar
  53. 53.
    Juul SE, McPherson RJ, Bauer LA, Ledbetter KJ, Gleason CA, Mayock DE (2008) A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics 122:383–391PubMedCrossRefGoogle Scholar
  54. 54.
    Fan X, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F (2010) Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr Neuropharmacol 8:324–334PubMedCrossRefGoogle Scholar
  55. 55.
    Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17PubMedGoogle Scholar
  56. 56.
    Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5:79–94PubMedGoogle Scholar
  57. 57.
    Sheldon RA, Sedik C, Ferriero DM (1998) Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res 810:114–122PubMedCrossRefGoogle Scholar
  58. 58.
    Boasen JF, McPherson RJ, Hays SL, Juul SE, Gleason CA (2008) Neonatal stress or morphine treatment alters adult mouse conditioned place preference. Neonatology 95:230–239PubMedCrossRefGoogle Scholar
  59. 59.
    Vannucci RC (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 27:317–326PubMedCrossRefGoogle Scholar
  60. 60.
    Vannucci RC, Christensen MA, Yager JY (1993) Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol 9:29–34PubMedCrossRefGoogle Scholar
  61. 61.
    Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM (1995) Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874PubMedGoogle Scholar
  62. 62.
    Yager JY, Brucklacher RM, Vannucci RC (1996) Paradoxical mitochondrial oxidation in perinatal hypoxic-ischemic brain damage. Brain Res 712:230–238PubMedCrossRefGoogle Scholar
  63. 63.
    Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160PubMedCrossRefGoogle Scholar
  64. 64.
    Vannucci SJ, Hagberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154PubMedCrossRefGoogle Scholar
  65. 65.
    Yager JY, Heitjan DF, Towfighi J, Vannucci RC (1992) Effect of insulin-induced and fasting hypoglycemia on perinatal hypoxic-ischemic brain damage. Pediatr Res 31:138–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Christopher M. Traudt
    • 1
  • Sandra E. Juul
    • 1
  1. 1.Division of Neonatology, Department of PediatricsUniversity of WashingtonSeattleUSA

Personalised recommendations