Advertisement

The Regenerative Activity of Interleukin-6

  • Eithan Galun
  • Stefan Rose-John
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 982)

Abstract

Interleukin-6 (IL-6) is a cytokine which is involved in many inflammatory processes and in the development of cancer. In addition, IL-6 has been shown to be important for the induction of hepatic acute-phase proteins, for the regeneration of the liver and for the stimulation of B-cells. IL-6 binds to a transmembrane IL-6 receptor (IL-6R), which is present on hepatocytes and some leukocytes. The complex of IL-6 and IL-6R associates with a second protein, gp130, which is expressed on all cells of the body. Since neither IL-6 nor IL-6R has a measurable affinity for gp130, cells, which do not express IL-6R, are not responsive to the cytokine IL-6. It could be shown, however, that a naturally occurring soluble IL-6R (sIL-6R) in complex with IL-6 can bind to gp130 on cells with no IL-6R expression. Therefore, cells shedding the sIL-6R render cells, which only express gp130, responsive to the cytokine. This process has been called trans-signaling. In the present chapter, we summarize the known activities of IL-6 with a special emphasis on regenerative activities, which often depend on the sIL-6R. A designer cytokine called Hyper-IL-6, which is a fusion protein of IL-6 and the sIL-6R, can mimic IL-6 trans-signaling responses in vitro and in vivo with considerably higher efficacy than the combination of the natural proteins IL-6 and sIL-6R. We present recent examples from animal models in which the therapeutic potential of Hyper-IL-6 has been evaluated. We propose that Hyper-IL-6 can be used to induce potent regeneration responses in liver, kidney, and other tissues and therefore will be a novel therapeutic approach in regenerative medicine.

Key words

gp130 Inflammation Interleukin-6 Interleukin-6-receptor Regeneration Shedding Soluble interleukin-6-receptor STAT3 Stem cells 

References

  1. 1.
    Hirano T et al (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76PubMedCrossRefGoogle Scholar
  2. 2.
    Bazan JF (1990) Haemopoietic receptors and helical cytokines. Immunol Today 11:350–354PubMedCrossRefGoogle Scholar
  3. 3.
    Yamasaki K et al (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241:825–828PubMedCrossRefGoogle Scholar
  4. 4.
    Hibi M et al (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157PubMedCrossRefGoogle Scholar
  5. 5.
    Heinrich PC et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20PubMedCrossRefGoogle Scholar
  6. 6.
    Scheller J et al (2006) Updating IL-6 classic- and trans-signaling. Signal Transduct 6:240–259CrossRefGoogle Scholar
  7. 7.
    Rose-John S et al (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80:227–236PubMedCrossRefGoogle Scholar
  8. 8.
    Jones S et al (2011) Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest 121:3375–3383PubMedCrossRefGoogle Scholar
  9. 9.
    Campard D et al (2006) Multilevel regulation of IL-6R by IL-6-sIL-6R fusion protein according to the primitiveness of peripheral blood-derived CD133+ cells. Stem Cells 24:1302–1314PubMedCrossRefGoogle Scholar
  10. 10.
    Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300(Pt 2):281–290PubMedGoogle Scholar
  11. 11.
    Romano M et al (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325PubMedCrossRefGoogle Scholar
  12. 12.
    Müllberg J et al (1993) The soluble interleukin-6 receptor is generated by shedding. Eur J Immunol 23:473–480PubMedCrossRefGoogle Scholar
  13. 13.
    Müllberg J et al (1992) Protein kinase C activity is rate limiting for shedding of the interleukin-6 receptor. Biochem Biophys Res Commun 189:794–800PubMedCrossRefGoogle Scholar
  14. 14.
    Dimitrov S et al (2006) Sleep enhances IL-6 trans-signaling in humans. FASEB J 20(12):2174–2176PubMedCrossRefGoogle Scholar
  15. 15.
    Scheller J et al (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387PubMedCrossRefGoogle Scholar
  16. 16.
    Althoff K et al (2001) Recognition sequences and structural elements contribute to shedding susceptibility of membrane proteins. Biochem J 353:663–672PubMedCrossRefGoogle Scholar
  17. 17.
    Althoff K et al (2000) Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem 267:2624–2631PubMedCrossRefGoogle Scholar
  18. 18.
    Matthews V et al (2003) Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 278:38829–38839PubMedCrossRefGoogle Scholar
  19. 19.
    Mullberg J et al (1995) A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol 155:5198–5205PubMedGoogle Scholar
  20. 20.
    Black RA et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733PubMedCrossRefGoogle Scholar
  21. 21.
    Moss ML et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733–736PubMedCrossRefGoogle Scholar
  22. 22.
    Rose-John S, Schooltink H (2007) Cytokines are a therapeutic target for the prevention of inflammation-induced cancers. Recent Results Cancer Res 174:57–66PubMedCrossRefGoogle Scholar
  23. 23.
    Grotzinger J et al (1999) IL-6 type cytokine receptor complexes: hexamer, tetramer or both? Biol Chem 380:803–813PubMedCrossRefGoogle Scholar
  24. 24.
    Grotzinger J et al (1997) The family of the IL-6-type cytokines: specificity and promiscuity of the receptor complexes. Proteins 27:96–109PubMedCrossRefGoogle Scholar
  25. 25.
    Fischer M et al (1997) I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat Biotechnol 15:142–145PubMedCrossRefGoogle Scholar
  26. 26.
    Galun E et al (2000) Liver regeneration induced by a designer human IL-6/sIL-6R fusion protein reverses severe hepatocellular injury. FASEB J 14:1979–1987PubMedCrossRefGoogle Scholar
  27. 27.
    Peters M et al (2000) Combined interleukin 6 and soluble interleukin 6 receptor accelerates murine liver regeneration. Gastroenterology 119:1663–1671PubMedCrossRefGoogle Scholar
  28. 28.
    Marz P et al (1998) Sympathetic neurons can produce and respond to interleukin 6. Proc Natl Acad Sci U S A 95:3251–3256PubMedCrossRefGoogle Scholar
  29. 29.
    Marz P et al (1999) Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur J Neurosci 11:2995–3004PubMedCrossRefGoogle Scholar
  30. 30.
    Islam O et al (2009) Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 20:188–199PubMedCrossRefGoogle Scholar
  31. 31.
    Klouche M et al (1999) Novel path to activation of vascular smooth muscle cells: up-regulation of gp130 creates an autocrine activation loop by IL-6 and its soluble receptor. J Immunol 163:4583–4589PubMedGoogle Scholar
  32. 32.
    Audet J et al (2001) Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci U S A 98:1757–1762PubMedCrossRefGoogle Scholar
  33. 33.
    Baiocchi M et al (2000) An IL-6/IL-6 soluble receptor (IL-6R) hybrid protein (H-IL-6) induces EPO-independent erythroid differentiation in human CD34(+) cells. Cytokine 12:1395–1399PubMedCrossRefGoogle Scholar
  34. 34.
    Hieronymus T et al (2008) The transcription factor repertoire of Flt3+ hematopoietic stem cells. Cells Tissues Organs 188:103–115PubMedCrossRefGoogle Scholar
  35. 35.
    Hieronymus T et al (2005) Progressive and controlled development of mouse dendritic cells from Flt3+CD11b+ progenitors in vitro. J Immunol 174:2552–2562PubMedGoogle Scholar
  36. 36.
    Ding X et al (2012) Polycomb group protein bmi1 promotes hematopoietic cell development from embryonic stem cells. Stem Cells Dev 21:121–132PubMedCrossRefGoogle Scholar
  37. 37.
    Hacker C et al (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380–386PubMedCrossRefGoogle Scholar
  38. 38.
    Sere KM et al (2011) Dendritic cell lineage commitment is instructed by distinct cytokine signals. Eur J Cell Biol 91:515–523PubMedCrossRefGoogle Scholar
  39. 39.
    Humphrey RK et al (2004) Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22:522–530PubMedCrossRefGoogle Scholar
  40. 40.
    Viswanathan S et al (2002) Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6. Stem Cells 20:119–138PubMedCrossRefGoogle Scholar
  41. 41.
    Jostock T et al (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem 268:160–167PubMedCrossRefGoogle Scholar
  42. 42.
    Nowell MA et al (2003) Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol 171:3202–3209PubMedGoogle Scholar
  43. 43.
    Nowell MA et al (2009) Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J Immunol 182:613–622PubMedGoogle Scholar
  44. 44.
    Richards PJ et al (2006) Functional characterization of a soluble gp130 isoform and its therapeutic capacity in an experimental model of inflammatory arthritis. Arthritis Rheum 54:1662–1672PubMedCrossRefGoogle Scholar
  45. 45.
    Hurst SM et al (2001) Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14:705–714PubMedCrossRefGoogle Scholar
  46. 46.
    Barkhausen T et al (2011) Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model. Crit Care Med 39:1407–1413PubMedCrossRefGoogle Scholar
  47. 47.
    Greenhill CJ et al (2011) IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J Immunol 186:1199–1208PubMedCrossRefGoogle Scholar
  48. 48.
    Atreya R et al (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 6:583–588PubMedCrossRefGoogle Scholar
  49. 49.
    Mitsuyama K et al (2006) STAT3 activation via interleukin 6 trans-signalling contributes to ileitis in SAMP1/Yit mice. Gut 55:1263–1269PubMedCrossRefGoogle Scholar
  50. 50.
    Becker C et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501PubMedCrossRefGoogle Scholar
  51. 51.
    Becker C et al (2005) IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220PubMedCrossRefGoogle Scholar
  52. 52.
    Matsumoto S et al (2010) Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol 184:1543–1551PubMedCrossRefGoogle Scholar
  53. 53.
    Lo CW et al (2011) IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res 71:424–434PubMedCrossRefGoogle Scholar
  54. 54.
    Lesina M et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19:456–469PubMedCrossRefGoogle Scholar
  55. 55.
    Scheller J et al (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813:878–888PubMedCrossRefGoogle Scholar
  56. 56.
    Heinrich PC et al (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636PubMedGoogle Scholar
  57. 57.
    Bollrath J et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102PubMedCrossRefGoogle Scholar
  58. 58.
    Grivennikov S et al (2009) IL-6 and STAT3 signaling is required for survival of intestinal epithelial cells and colitis associated cancer. Cancer Cell 16:103–113CrossRefGoogle Scholar
  59. 59.
    Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32PubMedCrossRefGoogle Scholar
  60. 60.
    Smith AG et al (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690PubMedCrossRefGoogle Scholar
  61. 61.
    Matsuda T et al (1999) STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 18:4261–4269PubMedCrossRefGoogle Scholar
  62. 62.
    Ying QL et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523PubMedCrossRefGoogle Scholar
  63. 63.
    Cressman DE et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383PubMedCrossRefGoogle Scholar
  64. 64.
    Hecht N et al (2001) Hyper-IL-6 gene therapy reverses fulminant hepatic failure. Mol Ther 3:683–687PubMedCrossRefGoogle Scholar
  65. 65.
    Nechemia-Arbely Y et al (2011) Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. J Hepatol 54:922–929PubMedCrossRefGoogle Scholar
  66. 66.
    Nechemia-Arbely Y et al (2008) IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 19:1106–1115PubMedCrossRefGoogle Scholar
  67. 67.
    Chalaris A et al (2010) Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med 207:1617–1624PubMedCrossRefGoogle Scholar
  68. 68.
    Garbers C et al (2011) Species specificity of ADAM10 and ADAM17 proteins in interleukin-6 (IL-6) trans-signaling and novel role of ADAM10 in inducible IL-6 receptor shedding. J Biol Chem 286:14804–14811PubMedCrossRefGoogle Scholar
  69. 69.
    Chalaris A et al (2007) Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 110:1748–1755PubMedCrossRefGoogle Scholar
  70. 70.
    Matsushita K et al (2005) Interleukin-6/soluble interleukin-6 receptor complex reduces infarct size via inhibiting myocardial apoptosis. Lab Invest 85:1210–1223PubMedCrossRefGoogle Scholar
  71. 71.
    Malato Y et al (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121:4850–4860PubMedCrossRefGoogle Scholar
  72. 72.
    Mitchell C, Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3:1167–1170PubMedCrossRefGoogle Scholar
  73. 73.
    Jackson LN et al (2008) PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 294:G1401–G1410PubMedCrossRefGoogle Scholar
  74. 74.
    Maione D et al (1998) Coexpression of IL-6 and soluble IL-6R causes nodular regenerative hyperplasia and adenomas of the liver. EMBO J 17:5588–5597PubMedCrossRefGoogle Scholar
  75. 75.
    Schirmacher P et al (1998) Hepatocellular hyperplasia, plasmacytoma formation, and extramedullary hematopoiesis in interleukin (IL)-6/soluble IL-6 receptor double-transgenic mice. Am J Pathol 153:639–648PubMedCrossRefGoogle Scholar
  76. 76.
    Peters M et al (1998) In vivo and in vitro activities of the gp130-stimulating designer cytokine Hyper-IL-6. J Immunol 161:3575–3581PubMedGoogle Scholar
  77. 77.
    Drucker C et al (2009) Interleukin-6 trans-signaling regulates glycogen consumption after d-galactosamine-induced liver damage. J Interferon Cytokine Res 29:711–718PubMedCrossRefGoogle Scholar
  78. 78.
    Riehle KJ et al (2008) Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med 205:91–103PubMedCrossRefGoogle Scholar
  79. 79.
    Markiewski MM et al (2009) The regulation of liver cell survival by complement. J Immunol 182:5412–5418PubMedCrossRefGoogle Scholar
  80. 80.
    Peters M et al (1997) Extramedullary expansion of hematopoietic progenitor cells in interleukin (IL)-6-sIL-6R double transgenic mice. J Exp Med 185:755–766PubMedCrossRefGoogle Scholar
  81. 81.
    Peters M et al (1996) The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J Exp Med 183:1399–1406PubMedCrossRefGoogle Scholar
  82. 82.
    Schooltink H et al (1991) Structural and functional studies on the human hepatic interleukin-6 receptor. Molecular cloning and overexpression in HepG2 cells. Biochem J 277(Pt 3):659–664PubMedGoogle Scholar
  83. 83.
    Hanna JH (2010) The STATs on naive iPSC reprogramming. Cell Stem Cell 7:274–276PubMedCrossRefGoogle Scholar
  84. 84.
    Stuhlmann-Laeisz C et al (2006) Forced dimerization of gp130 leads to constitutive STAT3 activation, cytokine-independent growth, and blockade of differentiation of embryonic stem cells. Mol Biol Cell 17:2986–2995PubMedCrossRefGoogle Scholar
  85. 85.
    Serrano AL et al (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44PubMedCrossRefGoogle Scholar
  86. 86.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940PubMedCrossRefGoogle Scholar
  87. 87.
    Lam SP et al (2010) Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration. Liver Transpl 16:1195–1206PubMedCrossRefGoogle Scholar
  88. 88.
    Yeoh GC et al (2007) Opposing roles of gp130-mediated STAT-3 and ERK-1/2 signaling in liver progenitor cell migration and proliferation. Hepatology 45:486–494PubMedCrossRefGoogle Scholar
  89. 89.
    Gotze KS et al (2001) gp130-stimulating designer cytokine Hyper-interleukin-6 synergizes with murine stroma for long-term survival of primitive human hematopoietic progenitor cells. Exp Hematol 29:822–832PubMedCrossRefGoogle Scholar
  90. 90.
    Kimura T et al (2000) Signal through gp130 activated by soluble interleukin (IL)-6 receptor (R) and IL-6 or IL-6R/IL-6 fusion protein enhances ex vivo expansion of human peripheral blood-derived hematopoietic progenitors. Stem Cells 18:444–452PubMedCrossRefGoogle Scholar
  91. 91.
    Ellingsgaard H et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass ­expansion. Proc Natl Acad Sci U S A 105:13163–13168PubMedCrossRefGoogle Scholar
  92. 92.
    Dierssen U et al (2008) Molecular dissection of gp130-dependent pathways in hepatocytes during liver regeneration. J Biol Chem 283:9886–9895PubMedCrossRefGoogle Scholar
  93. 93.
    Streetz KL et al (2003) Lack of gp130 expression in hepatocytes promotes liver injury. Gastroenterology 125:532–543PubMedCrossRefGoogle Scholar
  94. 94.
    Wuestefeld T et al (2003) Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration. J Biol Chem 278:11281–11288PubMedCrossRefGoogle Scholar
  95. 95.
    Wuestefeld T et al (2005) Lack of gp130 expression results in more bacterial infection and higher mortality during chronic cholestasis in mice. Hepatology 42:1082–1090PubMedCrossRefGoogle Scholar
  96. 96.
    Klein C et al (2005) The IL-6-gp130-STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J Clin Invest 115:860–869PubMedGoogle Scholar
  97. 97.
    Tiberio GA et al (2008) IL-6 Promotes compensatory liver regeneration in cirrhotic rat after partial hepatectomy. Cytokine 42:372–378PubMedCrossRefGoogle Scholar
  98. 98.
    Tiberio GA et al (2007) Interleukin-6 sustains hepatic regeneration in cirrhotic rat. Hepatogastroenterology 54:878–883PubMedGoogle Scholar
  99. 99.
    Gewiese-Rabsch J et al (2010) Role of IL-6 trans-signaling in CCl induced liver damage. Biochim Biophys Acta 1802:1054–1061PubMedCrossRefGoogle Scholar
  100. 100.
    Jin X et al (2007) Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology 46:802–812PubMedCrossRefGoogle Scholar
  101. 101.
    Zhu BM et al (2008) SOCS3 negatively regulates the gp130-STAT3 pathway in mouse skin wound healing. J Invest Dermatol 128:1821–1829PubMedCrossRefGoogle Scholar
  102. 102.
    Hilfiker-Kleiner D et al (2005) Many good reasons to have STAT3 in the heart. Pharmacol Ther 107:131–137PubMedCrossRefGoogle Scholar
  103. 103.
    Katare R et al (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108:1238–1251PubMedCrossRefGoogle Scholar
  104. 104.
    Chablais F et al (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21PubMedCrossRefGoogle Scholar
  105. 105.
    Jopling C et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609PubMedCrossRefGoogle Scholar
  106. 106.
    Schnabel K et al (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6:e18503PubMedCrossRefGoogle Scholar
  107. 107.
    Porrello ER et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedCrossRefGoogle Scholar
  108. 108.
    Cai CL et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108PubMedCrossRefGoogle Scholar
  109. 109.
    Zhou B et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113PubMedCrossRefGoogle Scholar
  110. 110.
    Bergmann O et al (2009) Evidence for ­cardiomyocyte renewal in humans. Science 324:98–102PubMedCrossRefGoogle Scholar
  111. 111.
    Bolli R et al (2011) A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol 50:589–597PubMedCrossRefGoogle Scholar
  112. 112.
    Huang C et al (2011) SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury. Am J Physiol Heart Circ Physiol 301:H1496–H1505PubMedCrossRefGoogle Scholar
  113. 113.
    Hirota H et al (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198PubMedCrossRefGoogle Scholar
  114. 114.
    Hilfiker-Kleiner D et al (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195PubMedCrossRefGoogle Scholar
  115. 115.
    Drenger B et al (2011) Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology 114:1364–1372PubMedCrossRefGoogle Scholar
  116. 116.
    Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301:H2038–H2049PubMedCrossRefGoogle Scholar
  117. 117.
    Rajesh KG et al (2005) Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/Akt dependent pathway. J Mol Cell Cardiol 39:766–776PubMedCrossRefGoogle Scholar
  118. 118.
    Takahama H et al (2006) Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther 20:159–165PubMedCrossRefGoogle Scholar
  119. 119.
    Smith PD et al (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–623PubMedCrossRefGoogle Scholar
  120. 120.
    Sun F et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372–375PubMedCrossRefGoogle Scholar
  121. 121.
    Cafferty WB et al (2001) Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci 21:7161–7170PubMedGoogle Scholar
  122. 122.
    Cao Z et al (2006) The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci 26:5565–5573PubMedCrossRefGoogle Scholar
  123. 123.
    Miao T et al (2006) Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 26:9512–9519PubMedCrossRefGoogle Scholar
  124. 124.
    Benigni A et al (2010) Kidney regeneration. Lancet 375:1310–1317PubMedCrossRefGoogle Scholar
  125. 125.
    Homsi E et al (2002) Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron 92:192–199PubMedCrossRefGoogle Scholar
  126. 126.
    Boswell RN et al (1994) Interleukin 6 ­production by human proximal tubular epithelial cells in vitro: analysis of the effects of interleukin-1 alpha (IL-1 alpha) and other cytokines. Nephrol Dial Transplant 9:599–606PubMedGoogle Scholar
  127. 127.
    Feliers D, Kasinath BS (2011) Erk in kidney diseases. J Signal Transduct 2011:768512PubMedGoogle Scholar
  128. 128.
    Skiniotis G et al (2008) Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex. Mol Cell 31:737–748PubMedCrossRefGoogle Scholar
  129. 129.
    Müller P et al (2008) Identification of JAK/STAT pathway regulators–insights from RNAi screens. Semin Cell Dev Biol 19:360–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Eithan Galun
    • 1
  • Stefan Rose-John
    • 2
  1. 1.Goldyne Savad Inst. of Gene TherapyHadassah Hebrew University HospitalJerusalemIsrael
  2. 2.Institut für BiochemieChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations