Skip to main content

ARA290 in a Rat Model of Inflammatory Pain

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 982))

Abstract

Chronic pain affects as many as one in five people. A proportion of patients with symptoms of neuropathic ­pain do not have clinical signs of any obvious tissue or nerve injury. Such patients include those with diffuse limb pain, back pain, and complex regional pain syndrome type 1. These patients remain a clinical enigma. However, through the development of the neuritis model, it has become apparent that local nerve inflammation in the absence of gross pathology (i.e., axonal degeneration and demyelination) may underlie part of the mechanisms of pain. In this chapter, we describe a method to induce the neuritis model. We also describe in detail a reliable method to test for mechanical allodynia and heat hyperalgesia. Data that demonstrates the potential benefits of the neuroprotective agent ARA290 in reducing pain behavior in the neuritis model are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  2. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  3. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  4. Chen Y, Devor M (1998) Ectopic mechanosensitivity in injured sensory axons arises from the site of spontaneous electrogenesis. Eur J Pain 2:165–178

    Article  PubMed  Google Scholar 

  5. Michaelis M, Blenk KH, Janig W, Vogel C (1995) Development of spontaneous activity and mechanosensitivity in axotomized afferent nerve fibers during the first hours after nerve transection in rats. J Neurophysiol 74:1020–1027

    PubMed  CAS  Google Scholar 

  6. Scadding JW (1981) Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol 73:345–364

    Article  PubMed  CAS  Google Scholar 

  7. Tal M, Eliav E (1996) Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64:511–518

    Article  PubMed  CAS  Google Scholar 

  8. Janig W, Baron R (2003) Complex regional pain syndrome: mystery explained? Lancet Neurol 2:687–697

    Article  PubMed  Google Scholar 

  9. Dilley A (2011) MRI signal hyper-intensity of neural tissues in diffuse chronic pain syndromes—a pilot study. Muscle Nerve 44:981–984

    Google Scholar 

  10. Bove GM, Ransil BJ, Lin HC, Leem JG (2003) Inflammation induces ectopic mechanical ­sensitivity in axons of nociceptors innervating deep tissues. J Neurophysiol 90:1949–1955

    Article  PubMed  Google Scholar 

  11. Gazda LS, Milligan ED, Hansen MK, Twining CM, Poulos NM, Chacur M, O’Connor KA, Armstrong C, Maier SF, Watkins LR, Myers RR (2001) Sciatic inflammatory neuritis (SIN): behavioral allodynia is paralleled by peri-sciatic proinflammatory cytokine and superoxide production. J Peripher Nerv Syst 6:111–129

    Article  PubMed  CAS  Google Scholar 

  12. Dilley A, Lynn B, Pang SJ (2005) Pressure and stretch mechanosensitivity of peripheral nerve fibres following local inflammation of the nerve trunk. Pain 117:462–472

    Article  PubMed  Google Scholar 

  13. Eliav E, Herzberg U, Ruda MA, Bennett GJ (1999) Neuropathic pain from an experimental neuritis of the rat sciatic nerve. Pain 83:169–182

    Article  PubMed  CAS  Google Scholar 

  14. Bove GM, Weissner W, Barbe MF (2009) Long lasting recruitment of immune cells and altered epi-perineurial thickness in focal nerve inflammation induced by complete Freund’s adjuvant. J Neuroimmunol 213:26–30

    Google Scholar 

  15. Meller ST, Gebhart GF (1997) Intraplantar zymosan as a reliable, quantifiable model of thermal and mechanical hyperalgesia in the rat. Eur J Pain 1:43–52

    Article  PubMed  CAS  Google Scholar 

  16. Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang HC, Tracey KJ, Maier SF, Watkins LR (2001) A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 94:231–244

    Article  PubMed  CAS  Google Scholar 

  17. Eliav E, Benoliel R, Tal M (2001) Inflammation with no axonal damage of the rat saphenous nerve trunk induces ectopic discharge and mechanosensitivity in myelinated axons. Neurosci Lett 311:49–52

    Article  PubMed  CAS  Google Scholar 

  18. Bove GM, Dilley A (2010) The conundrum of sensitization when recording from nociceptors. J Neurosci Methods 188:213–218

    Article  PubMed  Google Scholar 

  19. Richards N, Batty T, Dilley A (2011) CCL2 has similar excitatory effects to TNF-alpha in a subgroup of inflamed C-fiber axons. J Neurophysiol 106:2838–2848

    Article  PubMed  CAS  Google Scholar 

  20. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    Article  PubMed  CAS  Google Scholar 

  21. Gracely RH, Lynch SA, Bennett GJ (1992) Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain 51:175–194

    Article  PubMed  CAS  Google Scholar 

  22. LaMotte RH, Shain CN, Simone DA, Tsai EP (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66:190–211

    PubMed  CAS  Google Scholar 

  23. Eliav E, Benoliel R, Herzberg U, Kalladka M, Tal M (2009) The role of IL-6 and IL-1beta in painful perineural inflammatory neuritis. Brain Behav Immun 23:474–484

    Google Scholar 

  24. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, Marsh H, Maier SF, Watkins LR (2004) Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 110:299–309

    Article  PubMed  CAS  Google Scholar 

  25. Leem JG, Bove GM (2002) Mid-axonal tumor necrosis factor-alpha induces ectopic activity in a subset of slowly conducting cutaneous and deep afferent neurons. J Pain 3:45–49

    Article  PubMed  Google Scholar 

  26. Sorkin LS, Xiao WH, Wagner R, Myers RR (1997) Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 81:255–262

    Article  PubMed  CAS  Google Scholar 

  27. Ozaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN (2006) Effects of interleukin-1 beta, ­interleukin-6, and tumor necrosis factor on ­sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15:1529–1537

    Article  PubMed  Google Scholar 

  28. Dilley A, Bove GM (2008) Resolution of inflammation-induced axonal mechanical sensitivity and conduction slowing in C-fiber nociceptors. J Pain 9:185–192

    Article  PubMed  Google Scholar 

  29. Dilley A, Bove GM (2008) Disruption of axoplasmic transport induces mechanical sensitivity in intact rat C-fibre nociceptor axons. J Physiol 586:593–604

    Article  PubMed  CAS  Google Scholar 

  30. Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR (2006) Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci 23:617–626

    Article  PubMed  Google Scholar 

  31. Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18:1497–1506

    Article  PubMed  Google Scholar 

  32. Swartjes M, Morariu A, Niesters M, Brines M, Cerami A, Aarts L, Dahan A (2011) ARA290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain: an experimental study in rats and beta-common receptor knockout mice. Anesthesiology 115:1084–1092 33.Pulman KG, Smith M, Mengozzi M, Ghezzi P, Dilley A (2012) The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model. Neuroscience http://dx.doi.org/10.1016/j.neuroscience.2012.12.022 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dilley, A. (2013). ARA290 in a Rat Model of Inflammatory Pain. In: Ghezzi, P., Cerami, A. (eds) Tissue-Protective Cytokines. Methods in Molecular Biology, vol 982. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-308-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-308-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-307-7

  • Online ISBN: 978-1-62703-308-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics