Skip to main content

Immunomagnetic Purification of Fluorescent Legionella-Containing Vacuoles

  • Protocol
  • First Online:
Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

Protozoa are natural reservoirs of the environmental bacterium Legionella pneumophila. Upon inhalation of Legionella-laden aerosols, the amoeba-resistant bacteria replicate within human alveolar macrophages causing the severe pneumonia “Legionnaires’ disease.” Within host cells, including Dictyostelium discoideum, L. pneumophila establishes a custom-tailored compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system and involves a plethora of “effector” proteins, some of which specifically decorate the LCV membrane. This unique feature of LCVs is exploited to isolate the pathogen vacuole by immunomagnetic separation using an antibody against the effector protein SidC. LCV purity is further increased by a subsequent density gradient centrifugation step. The use of red fluorescent L. pneumophila and D. discoideum producing the LCV marker calnexin-GFP allows following the purification by fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields BS (1996) The molecular ecology of legionellae. Trends Microbiol 4:286–290

    Article  PubMed  CAS  Google Scholar 

  2. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3:286–296

    Article  CAS  Google Scholar 

  3. Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  PubMed  CAS  Google Scholar 

  4. Steinert M, Heuner K (2005) Dictyostelium as host model for pathogenesis. Cell Microbiol 7:307–314

    Article  PubMed  CAS  Google Scholar 

  5. Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9:563–575

    Article  PubMed  CAS  Google Scholar 

  6. Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    Article  PubMed  CAS  Google Scholar 

  7. Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic. 13:1187–1197

    Google Scholar 

  8. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm Type IV transporter of Legionella pneumophila. PLoS One 6:e17638

    Article  PubMed  CAS  Google Scholar 

  9. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  PubMed  CAS  Google Scholar 

  10. Urwyler S, Brombacher E, Hilbi H (2009) Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol 2:107–109

    PubMed  CAS  Google Scholar 

  11. Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phospho-inositide metabolism. Mol Microbiol 71: 1341–1352

    Article  PubMed  CAS  Google Scholar 

  12. Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M (2001) The phagosome proteome: insight into phagosome functions. J Cell Biol 152: 165–180

    Article  PubMed  CAS  Google Scholar 

  13. Gotthardt D, Dieckmann R, Blancheteau V, Kistler C, Reichardt F, Soldati T (2006) Preparation of intact, highly purified phagosomes from Dictyostelium. Methods Mol Biol 346:439–448

    PubMed  CAS  Google Scholar 

  14. Gotthardt D, Warnatz HJ, Henschel O, Bruckert F, Schleicher M, Soldati T (2002) High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol Biol Cell 13:3508–3520

    Article  PubMed  CAS  Google Scholar 

  15. Kima PE, Dunn W (2005) Exploiting calnexin expression on phagosomes to isolate Leishmania parasitophorous vacuoles. Microb Pathog 38:139–145

    Article  PubMed  CAS  Google Scholar 

  16. Lührmann A, Haas A (2000) A method to purify bacteria-containing phagosomes from infected macrophages. Methods Cell Sci 22:329–341

    Article  PubMed  Google Scholar 

  17. Fernandez-Mora E, Polidori M, Lührmann A, Schaible UE, Haas A (2005) Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 6:635–653

    Article  PubMed  CAS  Google Scholar 

  18. Sturgill-Koszycki S, Haddix PL, Russell DG (1997) The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18:2558–2565

    Article  PubMed  CAS  Google Scholar 

  19. Mills SD, Finlay BB (1998) Isolation and characterization of Salmonella typhimurium and Yersinia pseudotuberculosis-containing phagosomes from infected mouse macrophages: Y. pseudotuberculosis traffics to terminal lysosomes where they are degraded. Eur J Cell Biol 77:35–47

    Article  PubMed  CAS  Google Scholar 

  20. Shevchuk O, Batzilla C, Hägele S, Kusch H, Engelmann S, Hecker M, Haas A, Heuner K, Glöckner G, Steinert M (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508

    Article  PubMed  CAS  Google Scholar 

  21. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed  Google Scholar 

  22. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4-phos-phate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  PubMed  CAS  Google Scholar 

  23. Hilbi H, Weber S, Finsel I (2011) Anchors for effectors: subversion of phosphoinositide lipids by Legionella. Front Microbiol 2:91

    Article  PubMed  CAS  Google Scholar 

  24. Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  PubMed  CAS  Google Scholar 

  25. Urwyler S, Finsel I, Ragaz C, Hilbi H (2010) Isolation of Legionella-containing vacuoles by immuno-magnetic separation. Curr Protoc Cell Biol. Chapter 3, Unit 3.34

    Google Scholar 

  26. Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, Gerisch G (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20:6772–6782

    Article  PubMed  Google Scholar 

  27. Cocucci SM, Sussman M (1970) RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol 45:399–407

    Article  PubMed  CAS  Google Scholar 

  28. Malchow D, Nägele B, Schwarz H, Gerisch G (1972) Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. Eur J Biochem 28:136–142

    Article  PubMed  CAS  Google Scholar 

  29. Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  PubMed  CAS  Google Scholar 

  30. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  PubMed  CAS  Google Scholar 

  31. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    PubMed  CAS  Google Scholar 

  32. Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7: 995–1007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, the “Bundesministerium für Bildung und Forschung” (BMBF “Medical Infection Genomics”), and the German Research Foundation (DFG, HI 1511/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Finsel, I., Hoffmann, C., Hilbi, H. (2013). Immunomagnetic Purification of Fluorescent Legionella-Containing Vacuoles. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics