Skip to main content

Micropipette Aspiration for Studying Cellular Mechanosensory Responses and Mechanics

  • Protocol
  • First Online:
Book cover Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this chapter, we present how to set up a micropipette aspiration system and the experimental procedures for determining cortical tension and mechanosensory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  PubMed  CAS  Google Scholar 

  2. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8:1379–1385

    Article  PubMed  CAS  Google Scholar 

  3. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  PubMed  CAS  Google Scholar 

  4. Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996

    Article  PubMed  CAS  Google Scholar 

  5. Fukui Y, Yumura S, Yumura T, Mori H (1986) Agar overlay method: high-resolution immunofluorescence for the study of the contractile apparatus. Methods Enzymol 134:573–580

    Article  PubMed  CAS  Google Scholar 

  6. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  PubMed  CAS  Google Scholar 

  7. Zhang W, Robinson DN (2005) Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proc Natl Acad Sci USA 102:7186–7191

    Article  PubMed  CAS  Google Scholar 

  8. Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, Girard KD, Divi S, Iglesias PA, Kuo SC, Robinson DN (2008) Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol 18:471–480

    Article  PubMed  CAS  Google Scholar 

  9. Evans EA (1973) New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J 13:941–954

    Article  PubMed  CAS  Google Scholar 

  10. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  PubMed  CAS  Google Scholar 

  11. Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32:119–127

    Article  PubMed  CAS  Google Scholar 

  12. Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 21:3182–3192

    Article  PubMed  CAS  Google Scholar 

  13. Hiramoto Y (1963) Mechanical properties of sea urchin eggs II. Changes in mechanical properties from fertilization to cleavage. Exp Cell Res 32:76–88

    Article  PubMed  CAS  Google Scholar 

  14. Wolpert L (1966) The mechanical properties of the membrane of the sea urchin egg during cleavage. Exp Cell Res 41:385–396

    Article  PubMed  CAS  Google Scholar 

  15. Hiramoto Y (1990) Mechanical properties of the cortex before and during cleavage. Ann NY Acad Sci 582:22–30

    Article  PubMed  CAS  Google Scholar 

  16. Gerald N, Dai J, Ting-Beall HP, DeLozanne A (1998) A role for Dictyostelium RacE in cortical tension and cleavage furrow progression. J Cell Biol 141:483–492

    Article  PubMed  CAS  Google Scholar 

  17. Merkel R, Simson R, Simson DA, Hohenadl M, Boulbitch A, Wallraff E, Sackmann E (2000) A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J 79:707–719

    Article  PubMed  CAS  Google Scholar 

  18. Yang L, Effler JC, Kutscher BL, Sullivan SP, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68

    Article  PubMed  Google Scholar 

  19. Effler JC, Kee Y-S, Berk JM, Tran MN, Iglesias PA, Robinson DN (2006) Mitosis-specific mechanosensing and contractile protein redistribution control cell shape. Curr Biol 16:1962–1967

    Article  PubMed  CAS  Google Scholar 

  20. Ren Y, Effler JC, Norstrom M, Luo T, Firtel RA, Iglesias PA, Rock RS, Robinson DN (2009) Mechanosensing through cooperative interactions between the motor myosin-II and the actin crosslinker cortexillin-I. Curr Biol 19:1421–1428

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez-Gonzalez R, Simoes Sde M, Roper JC, Eaton S, Zallen JA (2009) Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 17:736–743

    Article  PubMed  CAS  Google Scholar 

  22. Kee Y-S, Ren Y, Dorfman D, Iijima M, Firtel RA, Iglesias PA, Robinson DN (2012) A mechanosensory system governs myosin II accumulation in dividing cells. Mol Biol Cell 23(8):1510–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH (GM066817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas N. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kee, YS., Robinson, D.N. (2013). Micropipette Aspiration for Studying Cellular Mechanosensory Responses and Mechanics. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics