Skip to main content

N-Glycomic and N-Glycoproteomic Studies in the Social Amoebae

  • Protocol
  • First Online:
Book cover Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

N-glycans modify the great majority of all secreted and plasma membrane proteins, which themselves constitute one-third to one-half of the proteome. The ultimate definition of the glycoproteome would be the identification of all the N-glycans attached to all the modified asparaginyl sites of all the proteins, but glycosylation heterogeneity makes this an unachievable goal. However, mass spectrometry in combination with other methods does have the power to deeply mine the N-glycome of Dictyostelium, and characterize glycan profiles at individual sites of glycoproteins. Recent studies from our laboratories using mass spectrometry-based methods have confirmed basic precepts of the N-glycome based on prior classical methods using radiotracer methods, and have extended the scope of glycan diversity and the distribution of glycan types across specific glycoprotein attachment sites. The protocols described here simplify studies of the N-glycome and -glycoproteome, which should prove useful for interpreting mutant phenotypes, conducting interstrain and interspecies comparisons, and investigating glycan functions in glycoproteins of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci U S A 102:1548–1553

    Article  PubMed  CAS  Google Scholar 

  2. Ivatt RL, Das OP, Henderson EJ, Robbins PW (1984) Glycoprotein biosynthesis in Dictyostelium discoideum: developmental regulation of the protein-linked glycans. Cell 38:561–567

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, Samuelson J (2007) The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A 104:11676–11681

    Article  PubMed  CAS  Google Scholar 

  4. West CM, Erdos GW, Davis R (1986) Glycoantigen expression is regulated both temporally and spatially during development in the cellular slime molds Dictyostelium discoideum and D. mucoroides. Mol Cell Biochem 72:121–140

    PubMed  CAS  Google Scholar 

  5. Couso R, van Halbeek H, Reinhold V, Kornfeld S (1987) The high mannose oligosaccharides of Dictyostelium discoideum glycoproteins contain a novel intersecting N-acetylglucosamine residue. J Biol Chem 262:4521–4527

    PubMed  CAS  Google Scholar 

  6. Amatayakul-Chantler S, Ferguson MAJ, Dwek RA, Rademacher TW, Parekh RB, Crandall IE, Newell PC (1991) Cell surface oligosaccharides in Dictyostelium during development. J Cell Sci 99:485–495

    CAS  Google Scholar 

  7. Nakagawa M, Tojo H, Fujii S (2011) A glycan of Psi-factor from Dictyostelium discoideum contains a bisecting-GlcNAc, an intersecting-GlcNAc, and a core α-1,6-fucose. Biosci Biotechnol Biochem 75:1964–1970

    Article  PubMed  CAS  Google Scholar 

  8. Freeze HH (1997) Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier Science BV, pp 89–121

    Article  PubMed  CAS  Google Scholar 

  9. Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734

    Article  PubMed  CAS  Google Scholar 

  10. Srikrishna G, Wang L, Freeze HH (1998) Fucoseβ-1-P-Ser is a new type of glycosylation: using antibodies to identify a novel structure in Dictyostelium discoideum and study multiple types of fucosylation during growth and development. Glycobiology 8:799–811

    Article  PubMed  CAS  Google Scholar 

  11. Qian Y, West CM, Kornfeld S (2011) UDP-GlcNAc:Glycoprotein N-acetylglucosamine-1-phosphotransferase mediates the initial step in the formation of the methylphosphomannosyl residues on the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. Biochem Biophys Res Commun 393:678–681

    Article  Google Scholar 

  12. Knecht DA, Dimond RL, Wheeler S, Loomis WF (1984) Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. J Biol Chem 259:10633–10640

    PubMed  CAS  Google Scholar 

  13. Lacoste CH, Freeze HH, Jones JA, Kaplan A (1989) Characteristics of the sulfation of N-linked oligosaccharides in vesicles from Dictyostelium discoideum: in vitro sulfation of lysosomal enzymes. Arch Biochem Biophys 273:505–515

    Article  PubMed  CAS  Google Scholar 

  14. Freeze HH, Hindsgaul O, Ichikawa M (1992) A novel pathway for phosphorylated oligosaccharide biosynthesis. Identification of an oligosaccharide-specific phosphate methyltransferase in Dictyostelium discoideum. J Biol Chem 267:4431–4439

    PubMed  CAS  Google Scholar 

  15. Sharkey DJ, Kornfeld R (1991) Developmental regulation of processing α-mannosidases and “intersecting” N-acetylglucosaminyltransferase in Dictyostelium discoideum. J Biol Chem 266:18477–18484

    PubMed  CAS  Google Scholar 

  16. West CM, van der Wel H, Coutinho PM, Henrissat B (2005) Glycosyltransferase genomics in Dictyostelium discoideum. In: Loomis WF, Kuspa A (eds) Dictyostelium genomics. Horizon Scientific Press, Norfolk, pp 235–264

    Google Scholar 

  17. Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12:R20

    Article  PubMed  CAS  Google Scholar 

  18. Schiller B, Hykollari A, Voglmeir J, Pöltl G, Hummel K, Razzazi-Fazeli E, Geyer R, Wilson IBH (2009) Development of Dictyostelium discoideum is associated with alteration of fucosylated N-glycan structures. Biochem J 423:41–52

    Article  PubMed  CAS  Google Scholar 

  19. Feasley CL, Johnson JM, West CM, Chia CP (2010) Glycopeptidome of a heavily N-glycosylated cell surface glycoprotein of Dictyostelium implicated in cell adhesion. J Proteome Res 9:3495–510

    Article  PubMed  CAS  Google Scholar 

  20. Swanson SK, Florens L, Washburn MP (2009) Generation and analysis of multidimensional protein identification technology datasets. Methods Mol Biol 492:1–20

    Article  PubMed  CAS  Google Scholar 

  21. Gao N (2005) Fluorophore-assisted ­carbohydrate electrophoresis: a sensitive and accurate method for the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods 35:323–327

    Article  PubMed  CAS  Google Scholar 

  22. Hase S, Ibuki T, Ikenaka T (1984) Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203

    PubMed  CAS  Google Scholar 

  23. Paschinger K, Hykollari A, Razzazi-Fazeli E, Greenwell P, Leitsch D, Walochnik J, Wilson IBH (2012) The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications. Glycobiology 22:300–313

    Article  PubMed  CAS  Google Scholar 

  24. Ciucanu I, Costello CE (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 125:16213–16219

    Article  PubMed  CAS  Google Scholar 

  25. Freeze HH, Etchison JR (1984) Presence of a nonlysosomal endo-β-N-acetylglucosaminidase in the cellular slime mold Dictyostelium discoideum. Arch Biochem Biophys 232:414–421

    Article  PubMed  CAS  Google Scholar 

  26. Abbott DW, Macauley MS, Vocadlo DJ, Boraston AB (2009) Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem 284:11676–11689

    Article  PubMed  CAS  Google Scholar 

  27. Buser R, Lazar Z, Käser S, Künzler M, Aebi M (2010) Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea. J Biol Chem 285:10715–10723

    Article  PubMed  CAS  Google Scholar 

  28. Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988) Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem 171:73–90

    Article  PubMed  CAS  Google Scholar 

  29. Paschinger K, Razzazi-Fazeli E, Furukawa K, Wilson IBH (2011) Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica. J Mass Spectrom 46:561–567

    Article  PubMed  CAS  Google Scholar 

  30. Pöltl G, Kerner D, Paschinger K, Wilson IBH (2007) N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J 274:714–726

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in the OUHSC OCMG Core Lab were supported by the OUHSC Dept. of Biochemistry & Molecular Biology, the OUHSC VP Office for Research, and NIH grants R01-GM037539 and R01-GM084383 to C.M.W. This work was also supported by a grant to I.B.H.W. from the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) [grant number P19615].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Feasley, C.L., Hykollari, A., Paschinger, K., Wilson, I.B.H., West, C.M. (2013). N-Glycomic and N-Glycoproteomic Studies in the Social Amoebae. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics