Computational Tools for Guided Discovery and Engineering of Metabolic Pathways

Part of the Methods in Molecular Biology book series (MIMB, volume 985)

Abstract

With a high demand for increasingly diverse chemicals, as well as sustainable synthesis for many existing chemicals, the chemical industry is increasingly looking to biosynthesis. The majority of biosynthesis examples of useful chemicals are either native metabolites made by an organism or the heterologous expression of known metabolic pathways into a more amenable host. For chemicals that no known biosynthetic route exists, engineers are increasingly relying on automated computational algorithms, as described here, to identify potential metabolic pathways. In this chapter, we review a broad range of approaches to predict novel metabolic pathways. Broadly, these can rely on biochemical databases to assemble known reactions into a new pathway or rely on generalized biochemical rules to predict unobserved enzymatic reactions that are likely feasible. Many programs are freely available and immediately useable by non-computationally experienced scientists.

Key words

Metabolic network Metabolic pathway design Heterologous pathways Enzyme database searching 

References

  1. 1.
    Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320CrossRefGoogle Scholar
  2. 2.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRefGoogle Scholar
  3. 3.
    Kind S, Jeong WK, Schroder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351CrossRefGoogle Scholar
  4. 4.
    Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366CrossRefGoogle Scholar
  5. 5.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefGoogle Scholar
  6. 6.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  7. 7.
    Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195CrossRefGoogle Scholar
  8. 8.
    Stephanopoulos G, Stafford DE (2002) Metabolic engineering: a new frontier of chemical reaction engineering. Chem Eng Sci 57:2595–2602CrossRefGoogle Scholar
  9. 9.
    Pennisi E (2005) How will big pictures emerge from a sea of biological data. Science 309:94CrossRefGoogle Scholar
  10. 10.
    Philippi S, Kohler J (2006) Addressing the problems with life-science databases for traditional uses and systems biology. Nat Rev Genet 7:482–488CrossRefGoogle Scholar
  11. 11.
    Copeland WB, Bartley BA, Chandran D, Galdzicki M, Kim KH, Sleight SC, Maranas CD, Sauro HM (2012) Computational tools for metabolic engineering. Metab Eng 14:270–280CrossRefGoogle Scholar
  12. 12.
    Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202CrossRefGoogle Scholar
  13. 13.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114CrossRefGoogle Scholar
  14. 14.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  15. 15.
    Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609CrossRefGoogle Scholar
  16. 16.
    Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499CrossRefGoogle Scholar
  17. 17.
    Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805CrossRefGoogle Scholar
  18. 18.
    Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473Google Scholar
  19. 19.
    Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4:7CrossRefGoogle Scholar
  20. 20.
    Wu D, Wang Q, Assary RS, Broadbelt LJ, Krilov G (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51:1634–1647CrossRefGoogle Scholar
  21. 21.
    Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:1–16Google Scholar
  22. 22.
    Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143CrossRefGoogle Scholar
  23. 23.
    Kotera M, Okuno Y, Hattori M, Goto S, Kanehisa M (2004) Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J Am Chem Soc 126:16487–16498CrossRefGoogle Scholar
  24. 24.
    Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47:1702–1712CrossRefGoogle Scholar
  25. 25.
    Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47:1702–1712CrossRefGoogle Scholar
  26. 26.
    Tokimatsu T, Kotera M, Goto S, Kanehisa M (2011) KEGG and GenomeNet resources for predicting protein function from omics data including KEGG PLANT resource. Protein Function Prediction for Omics Era, 271–288Google Scholar
  27. 27.
    Hou BK, Ellis LBM, Wackett LP (2004) Encoding microbial metabolic logic: predicting biodegradation. J Ind Microbiol Biotechnol 31:261–272CrossRefGoogle Scholar
  28. 28.
    Ellis L, Wackett L (2012) Use of the University of Minnesota biocatalysis/biodegradation database for study of microbial degradation. Microb Inform Exp 2:1CrossRefGoogle Scholar
  29. 29.
    Fenner K, Gao J, Kramer S, Ellis L, Wackett L (2008) Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction. Bioinformatics 24:2079–2085CrossRefGoogle Scholar
  30. 30.
    Gao JF, Ellis LBM, Wackett LP (2010) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491CrossRefGoogle Scholar
  31. 31.
    Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang PF, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516CrossRefGoogle Scholar
  32. 32.
    Ellis LBM, Hou BK, Kang WJ, Wackett LP (2003) The University of Minnesota biocatalysis/biodegradation database: post-genomic data mining. Nucleic Acids Res 31:262–265CrossRefGoogle Scholar
  33. 33.
    Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:1–18Google Scholar
  34. 34.
    Reif JH (1985) Depth-1st search is inherently sequential. Inform Process Lett 20:229–234CrossRefGoogle Scholar
  35. 35.
    Yousofshahi M, Lee K, Hassoun S (2011) Probabilistic pathway construction. Metab Eng 13:435–444CrossRefGoogle Scholar
  36. 36.
    Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556CrossRefGoogle Scholar
  37. 37.
    Papoutsakis ET (1984) Equations and calculations for fermentations of butyric-acid bacteria. Biotechnol Bioeng 26:174–187CrossRefGoogle Scholar
  38. 38.
    Carrera J, Rodrigo G, Singh V, Kirov B, Jaramillo A (2011) Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate. Biotechnol J 6:773–783CrossRefGoogle Scholar
  39. 39.
    Arita M (2000) Metabolic reconstruction using shortest paths. Simulat Pract Theor 8:109–125CrossRefGoogle Scholar
  40. 40.
    Pitkanen E, Jouhten P, Rousu J (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Syst Biol 3:103CrossRefGoogle Scholar
  41. 41.
    McShan DC, Rao S, Shah I (2003) PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics 19:1692–1698CrossRefGoogle Scholar
  42. 42.
    Blum T, Kohlbacher O (2008) MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24:2108–2109CrossRefGoogle Scholar
  43. 43.
    Jouhten P, Pitkanen E, Pakula T, Saloheimo M, Penttila M, Maaheimo H (2009) (13)C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. BMC Syst Biol 3:1–16Google Scholar
  44. 44.
    McShan D, Shah I (2005) Heuristic search for metabolic engineering: de novo synthesis of vanillin. Comput Chem Eng 29:499–507CrossRefGoogle Scholar
  45. 45.
    Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590CrossRefGoogle Scholar
  46. 46.
    Blum T, Kohlbacher O (2008) Using atom mapping rules for an improved detection of relevant routes in weighted metabolic networks. J Comput Biol 15:565–576CrossRefGoogle Scholar
  47. 47.
    Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376CrossRefGoogle Scholar
  48. 48.
    Fell DA, Small JR (1986) Fat synthesis in adipose-tissue—an examination of stoichiometric constraints. Biochem J 238:781–786Google Scholar
  49. 49.
    Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657CrossRefGoogle Scholar
  50. 50.
    Burgard AP, Maranas CD (2001) Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol Bioeng 74:364–375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations