Skip to main content

Using Multiple Tracers for 13C Metabolic Flux Analysis

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

13C-Metabolic flux analysis (13C-MFA) is a powerful technique for quantifying intracellular metabolic fluxes in living cells. These in vivo fluxes provide important information on the physiology of cells in culture, which can be used for metabolic engineering purposes and serve as inputs for systems biology modeling. The 13C-MFA technique consists of several steps: (1) selecting appropriate tracers for a given system of interest, (2) performing isotopic labeling experiments, (3) measuring isotopic labeling distributions in metabolic products, (4) estimating metabolic fluxes using least-squares regression, and (5) evaluating the goodness of fit and computing confidence intervals for estimated fluxes. In this chapter, we provide guidelines for performing 13C-MFA studies using multiple isotopic tracers, a technique that is especially useful for elucidating fluxes in complex biological systems where multiple carbon sources are present. Here, as an example, we describe key steps and decision points for designing 13C-MFA studies for microbes grown on mixtures of glucose and xylose. The general concepts described in this chapter are applicable to many other biological systems. For example, the same procedures can be applied to design 13C-MFA studies in mammalian cells, which are generally grown in complex media containing multiple substrates such as glucose and amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  Google Scholar 

  2. Moxley JF, Jewett MC, Antoniewicz MR et al (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 106:6477–6482

    Article  CAS  Google Scholar 

  3. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  Google Scholar 

  4. Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755

    Article  CAS  Google Scholar 

  5. Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21:63–69

    Article  CAS  Google Scholar 

  6. Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst Biol 6:43

    Article  CAS  Google Scholar 

  7. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  CAS  Google Scholar 

  8. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  CAS  Google Scholar 

  9. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  CAS  Google Scholar 

  10. Crown SB, Antoniewicz MR (2012) Selection of tracers for (13)C-Metabolic Flux Analysis using Elementary Metabolite Units (EMU) basis vector methodology. Metab Eng 14:150–161

    Article  CAS  Google Scholar 

  11. Yoo H, Stephanopoulos G, Kelleher JK (2004) Quantifying carbon sources for de novo lipogenesis in wild-type and IRS-1 knockout brown adipocytes. J Lipid Res 45:1324–1332

    Article  CAS  Google Scholar 

  12. Stephanopoulos G (2008) Metabolic engineering: enabling technology for biofuels production. Metab Eng 10:293–294

    Article  CAS  Google Scholar 

  13. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  CAS  Google Scholar 

  14. Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3:173–191

    Article  CAS  Google Scholar 

  15. van Winden WA, Heijnen JJ, Verheijen PJ et al (2001) A priori analysis of metabolic flux identifiability from (13)C-labeling data. Biotechnol Bioeng 74:505–516

    Article  Google Scholar 

  16. Walther JL, Metallo CM, Zhang J et al (2012) Optimization of (13)C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14:162–171

    Article  CAS  Google Scholar 

  17. Szyperski T, Glaser RW, Hochuli M et al (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab Eng 1:189–197

    Article  CAS  Google Scholar 

  18. Iwatani S, Van Dien S, Shimbo K et al (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111

    Article  CAS  Google Scholar 

  19. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2011) Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal Chem 83:3211–3216

    Article  CAS  Google Scholar 

  20. van Winden W, Schipper D, Verheijen P et al (2001) Innovations in generation and analysis of 2D [(13)C, (1)H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343

    Article  Google Scholar 

  21. Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609

    Article  CAS  Google Scholar 

  22. Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277–292

    Article  CAS  Google Scholar 

  23. Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233

    Article  CAS  Google Scholar 

  24. Jeffrey FM, Roach JS, Storey CJ et al (2002) 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300:192–205

    Article  CAS  Google Scholar 

  25. Choi J, Grossbach MT, Antoniewicz MR (2012) Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal Chem 84:4628–4632

    Article  CAS  Google Scholar 

  26. Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7:61–74

    Article  CAS  Google Scholar 

  27. Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4:247–263

    Article  CAS  Google Scholar 

  28. Costenoble R, Muller D, Barl T et al (2007) 13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae. FEMS Yeast Res 7:511–526

    Article  CAS  Google Scholar 

  29. Crown SB, Indurthi DC, Ahn WS et al (2011) Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 6:300–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciek R. Antoniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Antoniewicz, M.R. (2013). Using Multiple Tracers for 13C Metabolic Flux Analysis. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics