Skip to main content

Nuclear Magnetic Resonance Methods for Metabolic Fluxomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Fluxomics, through its core methodology of metabolic flux analysis (MFA), enables quantification of carbon traffic through cellular biochemical pathways. Isotope labeling experiments aid MFA by providing information on intracellular fluxes, especially through parallel and cyclic pathways. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are two complementary methods to measure abundances of isotopomers generated in these experiments. 2-D [13C, 1H] heteronuclear correlation NMR spectra can detect 13C isotopes coupled to protons and thus noninvasively separate molecules and atoms with a specific isotopic content from a mixture of molecular species. Furthermore, the fine structures of the peaks in these spectra can reveal scalar couplings between chemically bonded carbon atoms in the sample, from which isotopomer abundances can be quantified. This chapter introduces methods for NMR sample preparation and spectral acquisition of 2-D [13C, 1H] correlation maps, followed by a detailed presentation of methods to process the spectra and quantify isotopomer abundances. We explain the use of the software NMRViewJ for spectral visualization and processing, as well as MATLAB scripts developed by us for peak extraction, deconvolution of overlapping peaklets, and isotopomer abundance quantification. Finally, we discuss the applications of NMR-derived isotopomer data toward quantitatively understanding metabolic pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Shilpa Nargund and Max E. Joffe contributed equally to this work.

References

  1. Wiechert W, Schweissgut O, Takanaga H, Frommer WB (2007) Fluxomics: mass spectrometry versus quantitative imaging. Curr Opin Plant Biol 10:323–330

    Article  CAS  Google Scholar 

  2. Stephanopoulos G, Vallino J (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  CAS  Google Scholar 

  3. Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  Google Scholar 

  4. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG (2008) 1 H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoco 3:1001–1012

    Article  CAS  Google Scholar 

  5. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  6. Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors: advanced tools for spatiotemporal analysis of biodynamics in cells. Annu Rev Plant Biol 63:663–706

    Article  CAS  Google Scholar 

  7. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  8. Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257

    Article  CAS  Google Scholar 

  9. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448

    Article  CAS  Google Scholar 

  10. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106

    Article  CAS  Google Scholar 

  11. Giraudeau P, Massou S, Robin Y, Cahoreau E, Portais J-C, Akoka S (2011) Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Anal Chem 83:3112–3119

    Article  CAS  Google Scholar 

  12. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1 H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057

    Article  CAS  Google Scholar 

  13. Iyer VV, Sriram G, Fulton DB, Zhou R, Westgate ME, Shanks JV (2008) Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons. Plant Cell Environ 31:506–517

    Article  CAS  Google Scholar 

  14. Yuan Y, Hoon Yang T, Heinzle E (2010) (13)C metabolic flux analysis for larger-scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng 12:392–400

    Article  CAS  Google Scholar 

  15. Klapa MI, Aon JC, Stephanopoulos G (2003) Ion-trap mass spectrometry used in combination with gas chromatography for high-resolution metabolic flux determination. Biotechniques 34:832–836, 838, 840 passim

    CAS  Google Scholar 

  16. Blank L, Desphande R, Schmid A, Hayen H (2012) Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15 N-labeled substrates simultaneously. Anal Bioanal Chem 403:2291–2305

    Article  CAS  Google Scholar 

  17. Harris RK (1983) Nuclear magnetic resonance spectroscopy: a physiochemical view. Pitman Press, London

    Google Scholar 

  18. Grant DM, Harris RK, Ernst RR (1996) Encyclopedia of nuclear magnetic resonance. Angewandte Chemie Int Edit 35:2679

    Article  Google Scholar 

  19. van Winden W, Schipper D, Verheijen P, Heijnen J (2001) Innovations in generation and analysis of 2D [13C, 1 H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343

    Article  Google Scholar 

  20. Sriram G, Iyer VV, Fulton DB, Shanks JV (2007) Identification of hexose hydrolysis products in metabolic flux analytes: a case study of levulinic acid in plant protein hydrolysate. Metab Eng 9:442–451

    Article  CAS  Google Scholar 

  21. Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 1:30

    Google Scholar 

  22. Rucker SP, Shaka AJ (1989) Broadband homonuclear cross polarization in 2D N.M.R. using DIPSI-2. Mol Phys 68:509–517

    Article  CAS  Google Scholar 

  23. Griesinger C, Otting G, Wuethrich K, Ernst RR (1988) Clean TOCSY for proton spin system identification in macromolecules. J Am Chem Soc 110:7870–7872

    Article  CAS  Google Scholar 

  24. Locatelli M (2002) Simulated annealing algorithms for continuous global optimization, Handbook of global optimization. Kluwer Academic Publisher, The Netherlands

    Google Scholar 

  25. van Winden WA, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C, 1 H] COSY NMR data. Biotechnol Bioeng 80:731–745

    Article  Google Scholar 

  26. Sriram G, Shanks JV (2004) Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab Eng 6:116–132

    Article  CAS  Google Scholar 

  27. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  Google Scholar 

  28. Nikolau BJ, Perera MA, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54:536–545

    Article  CAS  Google Scholar 

  29. Sanchez AM, Bennett GN, San K-Y (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    Article  CAS  Google Scholar 

  30. Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85

    Article  CAS  Google Scholar 

  31. Willker W, Flögel U, Leibfritz D et al (1997) Ultra-high-resolved HSQC spectra of multiple-13C-labeled biofluids. J Magn Reson 125:216–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National Science Foundation (award number IOS 0922650) as well as Department of Chemical and Biomolecular Engineering, University of Maryland, and A. James Clark School of Engineering, University of Maryland (faculty startup grant to GS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Sriram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nargund, S., Joffe, M.E., Tran, D., Tugarinov, V., Sriram, G. (2013). Nuclear Magnetic Resonance Methods for Metabolic Fluxomics. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics