Skip to main content

Capillary Electrophoretic Enzyme Assays

  • Protocol
  • First Online:
Book cover Capillary Electrophoresis of Biomolecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 984))

Abstract

In the past years, capillary electrophoresis has become a frequently used technique for enzyme assays due to the high separation efficiency and versatility as well as small sample size and low consumption of chemicals. The capillary electrophoresis assays can be divided into two general categories: pre-capillary (or offline) assays and in-capillary (or online) assays. In pre-capillary assays, the incubation is performed offline and substrate(s) and product(s) are subsequently analyzed by capillary electrophoresis. In in-capillary assays enzyme reaction and separation of the analytes are performed inside the same capillary. In such assays the enzyme is either immobilized or in solution. The latter techniques is also referred to as electrophoretically mediated microanalysis (EMMA) indicating that the individual steps of the incubation as well as analysis are performed via electrophoretic phenomena. This chapter describes both techniques using the deacetylation of acetyl-lysine residues in model peptides by sirtuin enzymes as well as the hydrolysis of acetylthiocholine by acetylcholinesterase as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banke N, Hansen K, Diers I (1991) Detection of enzyme activity in fractions collected from free solution capillary electrophoresis of complex samples. J Chromatogr 559:325–335

    Article  CAS  Google Scholar 

  2. Van Dyck S, Kaale E, Nováková S, Glatz Z, Hoogmartens J, Van Schepdael A (2003) Advances in capillary electrophoretically mediated microanalysis. Electrophoresis 24:3868–3878

    Article  PubMed  Google Scholar 

  3. Nováková S, Van Dyck S, Van Schepdael A, Hoogmartens J, Glatz Z (2004) Electrophoretically mediated microanalysis. J Chromatogr A 1032:173–184

    Article  PubMed  Google Scholar 

  4. Glatz Z (2006) Determination of enzymatic activity by capillary electrophoresis. J Chromatogr B 841:23–37

    Article  CAS  Google Scholar 

  5. Zhang J, Hoogmartens J, Van Schepdael A (2008) Advances in CE-mediated microanalysis: an update. Electrophoresis 29:56–65

    Article  PubMed  Google Scholar 

  6. Zhang J, Hoogmartens J, Van Schepdael A (2010) Recent developments and applications of EMMA in enzymatic and derivatization reactions. Electrophoresis 31:65–73

    Article  PubMed  Google Scholar 

  7. Fan Y, Scriba GKE (2010) Advances in capillary electrophoretic enzyme assays. J Pharm Biomed Anal 53:1076–1090

    Article  PubMed  CAS  Google Scholar 

  8. Hai X, Yang B-F, Van Schepdael A (2012) Recent developments and applications of EMMA in enzymatic and derivatization reactions. Electrophoresis 33:211–227

    Article  PubMed  CAS  Google Scholar 

  9. Horvath J, Dolnik V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22:644–655

    Article  PubMed  CAS  Google Scholar 

  10. Righetti PG, Gelfi C, Verzola B, Castelletti L (2001) The state of the art of dynamic coatings. Electrophoresis 22:603–611

    Article  PubMed  CAS  Google Scholar 

  11. Kamande MW, Fletcher KA, Lowry M, Warner IM (2005) Capillary electrochromatography using polyelectrolyte multilayer coatings. J Sep Sci 28:710–718

    Article  PubMed  CAS  Google Scholar 

  12. Inagaki S, Esaka Y, Deyashiki Y, Uno B, Hara A, Toyo’oka T (2008) Human liver dihydrodiol dehydrogenase 1-catalyzed reaction generating 9α,11β-prostaglandin F2 from prostaglandin D2 followed by micellar electrokinetic chromatography. J Sep Sci 31:735–740

    Article  PubMed  CAS  Google Scholar 

  13. Bardelmeijer HA, Lingeman H, De Ruiter C, Underberg WJM (1998) Derivatization in capillary electrophoresis. J Chromatogr A 807:3–26

    Article  PubMed  CAS  Google Scholar 

  14. Underberg WJM, Waterval JCM (2002) Derivatization trends in capillary electrophoresis: an update. Electrophoresis 23:3922–3933

    Article  PubMed  CAS  Google Scholar 

  15. Mala Z, Krivankova L, Gebauer P, Bocek P (2007) Contemporary sample stacking in CE: a sophisticated tool based on simple principles. Electrophoresis 28:243–253

    Article  PubMed  CAS  Google Scholar 

  16. Breadmore MC, Thabano JRE, Dawod M, Kazarian AA, Quirino JP, Guijt RM (2009) Recent advances in enhancing the sensitivity in electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis 30:230–248

    Article  PubMed  CAS  Google Scholar 

  17. Mala Z, Gebauer P, Bocek P (2011) Contemporary sample stacking in analytical electrophoresis. Electrophoresis 32:116–126

    Article  PubMed  CAS  Google Scholar 

  18. Tzeng H, Hung CH, Wang JY, Chou CH, Hung HP (2006) Simultaneous determination of adenosine and its metabolites by capillary electrophoresis as a rapid monitoring tool for 5′-nucleotidase activity. J Chromatogr A 1129:149–152

    Article  PubMed  CAS  Google Scholar 

  19. Friedecky D, Tomkova J, Adam T (2007) Determination of ITPase activity by capillary electrophoresis. Clin Chem 53:1164–1165

    Article  PubMed  CAS  Google Scholar 

  20. Iqbal J, Lévesque SA, Sévigny J, Müller CE (2008) A highly sensitive CE-UV method with dynamic coating of silica-fused capillaries for monitoring of nucleotide pyrophosphatase/phosphodiesterase reactions. Electrophoresis 29:3685–3693

    Article  PubMed  CAS  Google Scholar 

  21. Pungor E Jr, Hague CM, Chen G, Lemontt JF, Dvorak-Ewell M, Prince WS (2009) Development of a functional bioassay for arylsulfatase B using the natural substrates of the enzyme. Anal Biochem 395:144–150

    Article  PubMed  CAS  Google Scholar 

  22. Baršun M, Jajčanin N, Vukelič B, Špoljarić J, Abramić M (2007) Human dipeptidyl peptidase III acts as a post-proline cleaving enzyme on endomorphins. Biol Chem 388:343–348

    PubMed  Google Scholar 

  23. He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresource Technol 98:3499–3505

    Article  CAS  Google Scholar 

  24. Albillos SM, Busto MD, Perez-Mateos M, Ortega N (2007) Analysis by capillary electrophoresis of the proteolytic activity of a Bacillus subtilis neutral protease on bovine caseins. Int Dairy J 17:1195–1200

    Article  CAS  Google Scholar 

  25. Piccard H, Hu JL, Fiten P, Proost P, Martens E, Van den Steen PE, Van Damme J, Opdenakker G (2009) “Reverse degradomics”, monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products. Electrophoresis 30:2366–2377

    Article  PubMed  CAS  Google Scholar 

  26. Bi H, Qiao L, Busnel J-M, Liu B, Girault HH (2009) Kinetics of proteolytic reactions in nanoporous materials. J Proteome Res 8:4685–4692

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh BC, Hsiao HY, Cheng TJ, Chen RLC (2008) Assays for serum cholinesterase activity by capillary electrophoresis and an amperometric flow injection choline biosensor. Anal Chim Acta 623:157–162

    Article  PubMed  CAS  Google Scholar 

  28. Fan Y, Ludewig R, Scriba GKE (2009) 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes. Anal Biochem 387:243–248

    Article  PubMed  CAS  Google Scholar 

  29. Fan Y, Hense M, Ludewig R, Weigerber C, Scriba GKE (2011) Capillary-electrophoresis-based sirtuin assay using non-peptide substrates. J Pharm Biomed Anal 54:772–778

    Article  PubMed  CAS  Google Scholar 

  30. Iqbal J, Burbiel JC, Müller CE (2006) Development of off-line and on-line capillary electrophoresis methods for the screening and characterization of adenosine kinase inhibitors and substrates. Electrophoresis 27:2505–2517

    Article  PubMed  CAS  Google Scholar 

  31. Lee KJ, Mwongela SM, Kottegoda S, Borland L, Nelson AR, Sims CE, Allbritton NL (2008) Determination of sphingosine kinase activity for cellular signaling studies. Anal Chem 80:1620–1627

    Article  PubMed  CAS  Google Scholar 

  32. Qi L, Qiao J, Yang GL, Chen Y (2009) Chiral ligand-exchange CE assays for separation of amino acid enantiomers and determination of enzyme kinetic constant. Electrophoresis 30:2266–2272

    Article  PubMed  CAS  Google Scholar 

  33. Konečný J, Juřica J, Tomandl J, Glatz Z (2007) Study of recombinant cytochrome P450 2C9 activity with diclofenac by MEKC. Electrophoresis 28:1229–1234

    Article  PubMed  Google Scholar 

  34. Afshar M, Thormann W (2006) Capillary electrophoretic investigation of the enantioselective metabolism of propafenone by human cytochrome P-450 supersomes: evidence for a typical kinetics by CYP2D6 and CYP3A4. Electrophoresis 27:1526–1536

    Article  PubMed  CAS  Google Scholar 

  35. Tan Y, Sun L, Xi Z, Yang GF, Jiang DQ, Yan XP, Yang X, Li HY (2008) A capillary electrophoresis assay for recombinant Bacillus subtilis protoporphyrinogen oxidase. Anal Biochem 383:200–204

    Article  PubMed  CAS  Google Scholar 

  36. Wang SS, Li Q, Ma PX, Geng LN, Deng YL (2008) Determination of monoamine oxidase activity by capillary electrophoresis. Chin J Anal Chem 36:1711–1715

    CAS  Google Scholar 

  37. Cunliffe JM, Whorton MR, Sunahara RK, Kennedy RT (2007) A CE assay for the detection of agonist stimulated adenylyl cyclase activity. Electrophoresis 28:1913–1920

    Article  PubMed  CAS  Google Scholar 

  38. Qi L, Yang G, Zhang H, Qiao J (2010) A chiral ligand exchange CE essay with zinc(II)-L-valine complex for determining enzyme kinetic constant of L-amino acid oxidase. Talanta 81:1554–1559

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Liu D, Bao JJ (2011) Characterization of tyrosine kinase and screening enzyme inhibitor by capillary electrophoresis with laser-induced fluoresce detector. J Chromatogr B 879:107–112

    Article  CAS  Google Scholar 

  40. Gratz A, Goetz C, Jose J (2010) A CE-based assay for human protein kinase CK2 activity measurement and inhibitor screening. Electrophoresis 31:634–640

    Article  PubMed  CAS  Google Scholar 

  41. Yangyuoru PM, Otieno AC, Mwongela SM (2011) Determination of sphingosine kinase 2 activity using fluorescent sphingosine by capillary electrophoresis. Electrophoresis 32:1742–1749

    Article  PubMed  CAS  Google Scholar 

  42. Bao JM, Regnier FE (1992) Ultramicro enzyme assays in a capillary electrophoretic system. J Chromatogr 608:217–224

    Article  PubMed  CAS  Google Scholar 

  43. Van Dyck S, Hoogmartens J, Van Schepdael A (2001) Michaelis-Menten analysis of bovine plasma amine oxidase by capillary electrophoresis using electrophoretically mediated microanalysis in a partially filled capillary. Electrophoresis 22:1436–1442

    Article  PubMed  Google Scholar 

  44. Okhonin V, Lin X, Krylov SN (2005) Transverse diffusion of laminar flow profiles to produce capillary nanoreactors. Anal Chem 77:5925–5929

    Article  PubMed  CAS  Google Scholar 

  45. Okhonin V, Wong E, Krylov SN (2008) Mathematical model for mixing reactants in a capillary microreactor by transverse diffusion of laminar flow profiles. Anal Chem 80:7482–7486

    Article  PubMed  CAS  Google Scholar 

  46. Kim HS, Wainer IW (2006) On-line drug metabolism in capillary electrophoresis. 1. Glucuronidation using rat liver microsomes. Anal Chem 78:7071–7077

    Article  PubMed  CAS  Google Scholar 

  47. Urban PL, Goodall DE, Bergström ET, Bruce NC (2006) 1,4-Benzoquinone-based electrophoretic assay for glucose oxidase. Anal Biochem 359:35–39

    Article  PubMed  CAS  Google Scholar 

  48. Urban PL, Goodall EM, Bergström ET, Bruce NC (2007) electrophoretic assay of penicillinase: substrate specificity screening by parallel CE with an active pixel sensor. Electrophoresis 28:1926–1936

    Article  PubMed  CAS  Google Scholar 

  49. Tang Z-M, Wang Z-Y, Kang J-W (2007) Screening of acetylcholine esterase inhibitors in natural extracts by CE with electrophoretically mediated microanalysis technique. Electrophoresis 28:360–365

    Article  PubMed  CAS  Google Scholar 

  50. Schuchert-Shi A, Hauser PC (2009) Peptic and tryptic digestion of peptides and proteins monitored by capillary electrophoresis with contactless conductivity detection. Anal Biochem 387:202–207

    Article  PubMed  CAS  Google Scholar 

  51. Wong E, Okhonin V, Berezovski MV, Nozaki T, Waldmann H, Alexandrov K, Krylov SN (2008) “Inject-mix-react-separate-and-quantitate” (IMReSQ) method for screening enzyme inhibitors. J Am Chem Soc 130:11862–11863

    Article  PubMed  CAS  Google Scholar 

  52. Guo L-P, Jiang T-F, Lv Z-H, Wang Y-H (2010) Screening α-glucosidase inhibitors from traditional Chinese drugs by capillary electrophoresis with electrophoretically ­mediated microanalysis. J Pharm Biomed Anal 53:1250–1253

    Article  PubMed  CAS  Google Scholar 

  53. Wang T, Kang J (2009) Hexokinase inhibitor screening based on adenosine 5′-diphosphate determination by electrophoretically mediated microanalysis. Electrophoresis 30:1349–1354

    Article  PubMed  Google Scholar 

  54. Nĕmec T, Glatz Z (2007) Integration of short-end injection mode into electrophoretically mediated microanalysis. J Chromatogr A 1155:206–213

    Article  PubMed  Google Scholar 

  55. Papežová K, Nĕmec T, Chaloupková R, Glatz Z (2007) Study of substrate inhibition by electrophoretically mediated microanalysis in partially filled capillary. J Chromatogr A 1150:327–331

    Article  PubMed  Google Scholar 

  56. Hai X, Konečnỳ J, Zeisbergerová M, Adams E, Hoogmartens J, Van Schepdael A (2008) Development of electrophoretically mediated microanalysis method for the kinetics study of flavin-containing monooxygenase in a partially filled capillary. Electrophoresis 29:3817–3824

    Article  PubMed  CAS  Google Scholar 

  57. Hai X, Adams E, Hoogmartens J, Van Schepdael A (2009) Enantioselective in-line and off-line CE methods for the kinetic study on cimetidine and its chiral metabolites with reference to flavin-containing monooxygenase genetic isoforms. Electrophoresis 30:1248–1257

    Article  PubMed  CAS  Google Scholar 

  58. Zeisbergerová M, Adámková A, Glatz Z (2009) Integration of on-line protein digestion by trypsin in CZE by means of electrophoretically mediated microanalysis. Electrophoresis 30:2378–2384

    Article  PubMed  Google Scholar 

  59. Zhang J, Hoogmartens J, Van Schepdael A (2008) Kinetic study of cytochrome P450 by capillary electrophoretically mediated microanalysis. Electrophoresis 29:3694–3700

    Article  PubMed  CAS  Google Scholar 

  60. Fan Y, Scriba GKE (2010) Electrophoretically mediated microanalysis assay for sirtuin enzymes. Electrophoresis 31:3874–3880

    Article  PubMed  CAS  Google Scholar 

  61. Sun X, Gao N, Jin W (2006) Monitoring yoctomole alkaline phosphatase by capillary electrophoresis with on-capillary catalysis-electrochemical detection. Anal Chim Acta 571:30–33

    Article  PubMed  CAS  Google Scholar 

  62. Chichester KD, Sebastian M, Ammerman JW, Colyer CL (2008) Enzymatic assay of marine bacterial phosphatases by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 29:3810–3816

    Article  PubMed  CAS  Google Scholar 

  63. Křenková J, Foret F (2004) Immobilized microfluidic enzymatic reactors. Electrophoresis 25:3550–3563

    Article  PubMed  Google Scholar 

  64. Ma JF, Zhang LH, Liang Z, Zhang WB, Zhang YK (2009) Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Anal Chim Acta 632:1–8

    Article  PubMed  CAS  Google Scholar 

  65. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  PubMed  CAS  Google Scholar 

  66. Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97:14178–14182

    Article  PubMed  CAS  Google Scholar 

  67. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  68. SIRT1 product data sheet, Enzo Life Sciences (www.enzolifesciences.com/fileadmin/enzo/BML/se239.pdf)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard K. E. Scriba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scriba, G.K.E., Abromeit, H., Hense, M., Fan, Y. (2013). Capillary Electrophoretic Enzyme Assays. In: Volpi, N., Maccari, F. (eds) Capillary Electrophoresis of Biomolecules. Methods in Molecular Biology, vol 984. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-296-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-296-4_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-295-7

  • Online ISBN: 978-1-62703-296-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics