Skip to main content

Oligonucleotide Recombination Enabled Site-Specific Mutagenesis in Bacteria

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligonucleotide recombination is one type of recombineering that uses ssDNA oligonucleotides to direct chromosomal mutations. Oligo recombination occurs without addition of any exogenous functions, making this approach potentially useful in many different bacteria. Here we describe the basic technique for constructing a site-specific genomic mutation in Pseudomonas syringae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071

    PubMed  CAS  Google Scholar 

  2. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  PubMed  CAS  Google Scholar 

  4. van Kessel JC, Marinelli LJ, Hatfull GF (2008) Recombineering mycobacteria and their phages. Nat Rev Microbiol 6:851–857

    Article  PubMed  Google Scholar 

  5. Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci U S A 105:1626–1631

    Article  PubMed  CAS  Google Scholar 

  6. Swingle B, Markel E, Costantino N, Bubunenko MG, Cartinhour S, Court DL (2010) Oligonucleotide recombination in Gram-negative bacteria. Mol Microbiol 75:138–148

    Article  PubMed  CAS  Google Scholar 

  7. Swingle B, Markel E, Cartinhour S (2010) Oligonucleotide recombination: a hidden treasure. Bioeng Bugs 1:263–266. doi:10.4161/bbug.1.4.12098

    Article  PubMed  Google Scholar 

  8. Bryan A, Swanson MS (2011) Oligonucleotides stimulate genomic alterations of Legionella pneumophila. Mol Microbiol 80:231–247. doi:10.1111/j.1365-2958.2011.07573.x

    Article  PubMed  CAS  Google Scholar 

  9. Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S (2010) Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76:4960–4968

    Article  PubMed  CAS  Google Scholar 

  10. Dutra BE, Sutera VA Jr, Lovett ST (2007) RecA-independent recombination is efficient but limited by exonucleases. Proc Natl Acad Sci U S A 104:216–221

    Article  PubMed  CAS  Google Scholar 

  11. Winans SC, Elledge SJ, Krueger JH, Walker GC (1985) Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol 161:1219–1221

    PubMed  CAS  Google Scholar 

  12. Sawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M, Court C, Court DL (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407:45–59. doi:S0022-2836(11)00059-3 [pii] 10.1016/j.jmb.2011.01.030

    Article  PubMed  CAS  Google Scholar 

  13. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742–6746

    Article  PubMed  CAS  Google Scholar 

  14. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  15. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  16. Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan M. Swingle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Swingle, B.M. (2013). Oligonucleotide Recombination Enabled Site-Specific Mutagenesis in Bacteria. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics