Skip to main content

In Vitro Evolution of Enzymes

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

In the past decade, in vitro evolution techniques have been used to improve the performance or alter the activity of a number of different enzymes and have generated enzymes de novo. In this review, we provide an overview of the available in vitro methods, their application, and some general considerations for enzyme engineering in vitro. We discuss the advantages of in vitro over in vivo approaches and focus on ribosome display, mRNA display, DNA display technologies, and in vitro compartmentalization (IVC) methods. This review aims to help researchers determine which approach is best suited for their own experimental needs and to highlight that in vitro methods offer a promising route for enzyme engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen N, Abramov S, Dror Y, Freeman A (2001) In vitro enzyme evolution: the screening challenge of isolating the one in a million. Trends Biotechnol 19:507–510

    Article  PubMed  CAS  Google Scholar 

  2. Fiammengo R, Jäschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16:614–621

    PubMed  CAS  Google Scholar 

  3. Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836

    Article  PubMed  CAS  Google Scholar 

  4. Cho G, Keefe AD, Liu RH, Wilson DS, Szostak JW (2000) Constructing high complexity synthetic libraries of long ORFs using in vitro selection. J Mol Biol 297:309–319

    Article  PubMed  CAS  Google Scholar 

  5. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    Article  PubMed  CAS  Google Scholar 

  6. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  PubMed  CAS  Google Scholar 

  7. Renesto P, Raoult D (2003) From genes to proteins—in vitro expression of rickettsial proteins. Ann N Y Acad Sci 990:642–652

    Article  PubMed  CAS  Google Scholar 

  8. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  PubMed  CAS  Google Scholar 

  9. Chusacultanachai S, Yuthavong Y (1994) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. Methods Mol Biol 270:319–333

    Google Scholar 

  10. Bieberich E, Kapitonov D, Tencomnao T, Yu RK (2000) Protein-ribosome-mRNA display: affinity isolation of enzyme-ribosome-mRNA complexes and cDNA cloning in a single-tube reaction. Anal Biochem 287:294–298

    Article  PubMed  CAS  Google Scholar 

  11. Amstutz P, Pelletier JN, Guggisberg A, Jermutus L, Cesaro-Tadic S, Zahnd C, Plückthun A (2002) In vitro selection for catalytic activity with ribosome display. J Am Chem Soc 124:9396–9403

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi F, Ebihara T, Mie M, Yanagida Y, Endo Y, Kobatake E, Aizawa M (2002) Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads. FEBS Lett 514:106–110

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi F, Funabashi H, Mie M, Endo Y, Sawasaki T, Aizawa M, Kobatake E (2005) Activity-based in vitro selection of T4 DNA ligase. Biochem Biophys Res Commun 336:987–993

    Article  PubMed  CAS  Google Scholar 

  14. Quinn DJ, Cunningham S, Walker B, Scott CJ (2008) Activity-based selection of a proteolytic species using ribosome display. Biochem Biophys Res Commun 370:77–81

    Article  PubMed  CAS  Google Scholar 

  15. Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–831

    Article  PubMed  CAS  Google Scholar 

  16. Seelig B (2011) mRNA display for the selection and evolution of enzymes from in vitro-translated protein libraries. Nat Protoc 6:540–552

    Article  PubMed  CAS  Google Scholar 

  17. Odegrip R, Coomber D, Eldridge B, Hederer R, Kuhlman PA, Ullman C, FitzGerald K, McGregor D (2004) CIS display: in vitro selection of peptides from libraries of protein-DNA complexes. Proc Natl Acad Sci U S A 101:2806–2810

    Article  PubMed  CAS  Google Scholar 

  18. Reiersen H, Lobersli I, Loset GA, Hvattum E, Simonsen B, Stacy JE, McGregor D, FitzGerald K, Welschof M, Brekke OH, Marvik OJ (2005) Covalent antibody display—an in vitro antibody-DNA library selection system. Nucleic Acids Res 33:e10

    Article  PubMed  Google Scholar 

  19. Cohen HM, Tawfik DS, Griffiths AD (2004) Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization. Protein Eng Des Sel 17:3–11

    Article  PubMed  CAS  Google Scholar 

  20. Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H (2004) In vitro selection of restriction endonucleases by in vitro compartmentalization. Nucleic Acids Res 32:e95

    Article  PubMed  Google Scholar 

  21. Fallah-Araghi A, Baret JC, Ryckelynck M, Griffiths AD (2012) A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip 12:882–891

    Article  PubMed  CAS  Google Scholar 

  22. Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12:1291–1300

    Article  PubMed  CAS  Google Scholar 

  23. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35

    Article  PubMed  CAS  Google Scholar 

  24. Stapleton JA, Swartz JR (2010) Development of an in vitro compartmentalization screen for high-throughput directed evolution of (FeFe) hydrogenases. PLoS One 5:1–8

    Google Scholar 

  25. Kelly BT, Griffiths AD (2007) Selective gene amplification. Protein Eng Des Sel 20:577–581

    Article  PubMed  CAS  Google Scholar 

  26. Sumida T, Doi N, Yanagawa H (2009) Bicistronic DNA display for in vitro selection of Fab fragments. Nucleic Acids Res 37:e147

    Article  PubMed  Google Scholar 

  27. Arnold FH, Georgiou G (2003) Directed evolution library creation: methods and protocols, vol 231, Methods in molecular biology. Humana Press Inc., Toyota, NJ

    Book  Google Scholar 

  28. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100

    Article  PubMed  CAS  Google Scholar 

  29. Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 13:19–25

    Article  PubMed  CAS  Google Scholar 

  30. Denault M, Pelletier JN (2006) Protein library design and screening. Methods Mol Biol 352:127–154

    Google Scholar 

  31. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32:1448–1459

    Article  PubMed  CAS  Google Scholar 

  32. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9:1797–1804

    Article  PubMed  CAS  Google Scholar 

  33. Virnekas B, Ge LM, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE (1994) Trinucleotide phosphoramidites—ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 22:5600–5607

    Article  PubMed  CAS  Google Scholar 

  34. Janczyk M, Appel B, Springstubbe D, Fritz HJ, Muller S (2012) A new and convenient approach for the preparation of beta-cyanoethyl protected trinucleotide phosphoramidites. Org Biomol Chem 10:1510–1513

    Article  PubMed  CAS  Google Scholar 

  35. Ahn JH, Kang TJ, Kim DM (2008) Tuning the expression level of recombinant proteins by modulating mRNA stability in a cell-free protein synthesis system. Biotechnol Bioeng 101:422–427

    Article  PubMed  CAS  Google Scholar 

  36. Schechter I (1973) Biologically and chemically pure mRNA coding for a mouse immunoglobulin L-chain prepared with the aid of antibodies and immobilized oligothymidine. Proc Natl Acad Sci U S A 70:2256–2260

    Article  PubMed  CAS  Google Scholar 

  37. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026

    Article  PubMed  CAS  Google Scholar 

  38. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942

    Article  PubMed  CAS  Google Scholar 

  39. Lipovsek D, Plückthun A (2004) In vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67

    Article  PubMed  CAS  Google Scholar 

  40. Zahnd C, Amstutz P, Plückthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4:269–279

    Article  PubMed  CAS  Google Scholar 

  41. Jestin JL, Kaminski PA (2004) Directed enzyme evolution and selections for catalysis based on product formation. J Biotechnol 113:85–103

    Article  PubMed  CAS  Google Scholar 

  42. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:568–574

    Article  Google Scholar 

  43. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  PubMed  CAS  Google Scholar 

  44. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408

    Article  PubMed  CAS  Google Scholar 

  45. Leemhuis H, Stein V, Griffiths AD, Hollfelder F (2005) New genotype–phenotype linkages for directed evolution of functional proteins. Curr Opin Struct Biol 15:472–478

    Article  PubMed  CAS  Google Scholar 

  46. Kurz M, Gu K, Lohse PA (2000) Psoralen photo-crosslinked mRNA–puromycin conjugates: a novel template for the rapid and facile preparation of mRNA–protein fusions. Nucleic Acids Res 28:e83

    Article  PubMed  CAS  Google Scholar 

  47. Liu RH, Barrick JE, Szostak JW, Roberts RW (2000) Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol 318:268–293

    Article  PubMed  CAS  Google Scholar 

  48. Takahashi TT, Roberts RW (2009) In vitro selection of protein and peptide libraries using mRNA display. Methods Mol Biol 535:293–314

    Article  PubMed  CAS  Google Scholar 

  49. Cotten SW, Zou JW, Valencia CA, Liu RH (2011) Selection of proteins with desired properties from natural proteome libraries using mRNA display. Nat Protoc 6:1163–1182

    Article  PubMed  CAS  Google Scholar 

  50. Kurz M, Gu K, Al-Gawari A, Lohse PA (2001) cDNA—protein fusions: covalent protein-gene conjugates for the in vitro selection of peptides and proteins. Chembiochem 2:666–672

    Article  PubMed  CAS  Google Scholar 

  51. Ueno S, Nemoto N (2012) cDNA display: rapid stabilization of mRNA display. Methods Mol Biol 805:113–135

    Article  PubMed  CAS  Google Scholar 

  52. Cho GS, Szostak JW (2006) Directed evolution of ATP binding proteins from a zinc finger domain by using mRNA display. Chem Biol 13:139–147

    Article  PubMed  CAS  Google Scholar 

  53. Golynskiy MV, Seelig B (2010) De novo enzymes: from computational design to mRNA display. Trends Biotechnol 28:340–345

    Article  PubMed  CAS  Google Scholar 

  54. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  PubMed  CAS  Google Scholar 

  55. Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3:561–570

    Article  PubMed  CAS  Google Scholar 

  56. Bernath K, Hai MT, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS (2004) In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Anal Biochem 325:151–157

    Article  PubMed  CAS  Google Scholar 

  57. Ghadessy FJ, Holliger P (2004) A novel emulsion mixture for in vitro compartmentalization of transcription and translation in the rabbit reticulocyte system. Protein Eng Des Sel 17:201–204

    Article  PubMed  CAS  Google Scholar 

  58. Ghadessy FJ, Ong JL, Holliger P (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A 98:4552–4557

    Article  PubMed  CAS  Google Scholar 

  59. Eisenstein M (2006) Tiny droplets make a big splash. Nat Methods 3:71

    Article  PubMed  CAS  Google Scholar 

  60. Song H, Ismagilov RF (2003) Millisecond kinetics using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  PubMed  CAS  Google Scholar 

  61. Mazutis L, Baret JC, Treacy P, Skhiri Y, Fallah Araghi A, Ryckelynck M, Taly V, Griffiths AD (2009) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9:2902–2908

    Article  PubMed  CAS  Google Scholar 

  62. Doi N, Yanagawa H (1999) STABLE: ­protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett 457:227–230

    Article  PubMed  CAS  Google Scholar 

  63. Bertschinger J, Neri D (2004) Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Eng Des Sel 17:699–707

    Article  PubMed  CAS  Google Scholar 

  64. Bertschinger J, Grabulovski D, Neri D (2007) Selection of single domain binding proteins by covalent DNA display. Protein Eng Des Sel 20:57–68

    Article  PubMed  CAS  Google Scholar 

  65. Stein V, Sielaff I, Johnsson K, Hollfelder F (2007) A covalent chemical genotype–phenotype linkage for in vitro protein evolution. Chembiochem 8:2191–2194

    Article  PubMed  CAS  Google Scholar 

  66. Kaltenbach M, Stein V, Hollfelder F (2011) SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution. Chembiochem 12:2208–2216

    Article  PubMed  CAS  Google Scholar 

  67. Gallie DR, Kado CI (1989) A translational enhancer derived from Tobacco Mosaic-Virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci U S A 86:129–132

    Article  PubMed  CAS  Google Scholar 

  68. Villemagne D, Jackson R, Douthwaite JA (2006) Highly efficient ribosome display selection by use of purified components for in vitro translation. J Immunol Methods 313:140–148

    Article  PubMed  CAS  Google Scholar 

  69. Jagus R, Joshi B, Miyamoto S, Beckler GS (1998) In vitro translation. Curr Protoc Cell Biol. 2001 May; Chapter 11:Unit 11.2. doi: 10.1002/0471143030.cb1102s00

    Google Scholar 

  70. Hillebrecht JR, Chong SR (2008) A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol 8:58

    Article  PubMed  Google Scholar 

  71. He MY, He YZ, Luo Q, Wang MR (2011) From DNA to protein: no living cells required. Process Biochem 46:615–620

    Article  CAS  Google Scholar 

  72. Stein V, Hollfelder F (2009) An efficient method to assemble linear DNA templates for in vitro screening and selection systems. Nucleic Acids Res 37:e122

    Article  PubMed  Google Scholar 

  73. Douthwaite JA, Jackson RH (2011) Ribosome display and related technologies: methods and protocols, vol 805, Methods in molecular biology. Humana Press, New York

    Google Scholar 

  74. Fujita S, Zhou JM, Taira K (2007) Ribosome-inactivation display system. Methods Mol Biol 352:221–236

    PubMed  CAS  Google Scholar 

  75. Lamboy JA, Tam PY, Lee LS, Jackson PJ, Avrantinis SK, Lee HJ, Corn RM, Weiss GA (2008) Chemical and genetic wrappers for improved phage and RNA display. Chembiochem 9:2846–2852

    Article  PubMed  CAS  Google Scholar 

  76. Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720

    Article  PubMed  CAS  Google Scholar 

  77. Wang TP, Su YC, Chen Y, Liou YM, Lin KL, Wang EC, Hwang LC, Wang YM, Chen YH (2012) In vitro selection and characterization of a novel Zn(II)-dependent phosphorothiolate thiolesterase ribozyme. Biochemistry 51:496–510

    Article  PubMed  CAS  Google Scholar 

  78. Yonezawa M, Doi N, Higashinakagawa T, Yanagawa H (2004) DNA display of biologically active proteins for in vitro protein selection. J Biochem 135:285–288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burckhard Seelig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Golynskiy, M.V., Haugner, J.C., Morelli, A., Morrone, D., Seelig, B. (2013). In Vitro Evolution of Enzymes. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics