Skip to main content

Rational Protein Sequence Diversification by Multi-Codon Scanning Mutagenesis

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

A new method for protein sequence diversification is based on generating random codon mutations to an encoding DNA. This allows for the scanning of user-defined amino acid changes to any protein of interest, and is an alternative to traditional directed evolution strategies. This chapter describes the procedures required to apply this technology to any protein of interest. The resulting libraries can then be screened for new or improved protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cirino PC et al (2003) Generating mutant libraries using error-prone PCR. Methods Mol Biol 231:3–9

    PubMed  CAS  Google Scholar 

  2. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  PubMed  CAS  Google Scholar 

  3. Liu J, Cropp TA (2012) A method for multi-codon scanning mutagenesis of proteins based on asymmetric transposons. Protein Eng Des Sel 25:67–72

    Article  PubMed  CAS  Google Scholar 

  4. Haapa S et al (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 27:2777–2784

    Article  PubMed  CAS  Google Scholar 

  5. Gerth ML et al (2004) A second-generation system for unbiased reading frame selection. Protein Eng Des Sel 17:595–602

    Article  PubMed  CAS  Google Scholar 

  6. Kim YC, Morrison SL (2009) N-terminal domain-deleted Mu transposase exhibits increased transposition activity with low target site preference in modified buffers. J Mol Microbiol Biotechnol 17:30–40

    Article  PubMed  CAS  Google Scholar 

  7. Patrick WM et al (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng 16:451–457

    Article  PubMed  CAS  Google Scholar 

  8. Poussu E et al (2004) Probing the alpha-complementing domain of E. coli beta-galactosidase with use of an insertional pentapeptide mutagenesis strategy based on Mu in vitro DNA transposition. Proteins 54:681–692

    Article  PubMed  CAS  Google Scholar 

  9. Williams R et al (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3:545–550

    Article  PubMed  CAS  Google Scholar 

  10. Michelsen BK (1995) Transformation of Escherichia coli increases 260-fold upon inactivation of T4 DNA ligase. Anal Biochem 225:172–174

    Article  PubMed  CAS  Google Scholar 

  11. Ymer S (1991) Heat inactivation of DNA ligase prior to electroporation increases transformation efficiency. Nucleic Acids Res 19:6960

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institutes of Health (GM084396) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ashton Cropp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Liu, J., Cropp, T.A. (2013). Rational Protein Sequence Diversification by Multi-Codon Scanning Mutagenesis. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics