Skip to main content

Promiscuity-Based Enzyme Selection for Rational Directed Evolution Experiments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

Error-prone PCR, DNA shuffling, and saturation mutagenesis are techniques used by protein engineers to mimic the natural “evolutionary walk” that conjures new enzymes. Rational design is often critical in efforts to accelerate this “random walk” into a “resolute sprint.” Previous work by our group established a computational method for detecting active sites (CLASP) based on spatial and electrostatic properties of catalytic residues, and a method to quantify promiscuous activities in a wide range of proteins (PROMISE). Here, we describe a rational design flow (DECAAF) based on the PROMISE methodology to choose a protein which, when subjected to minimal mutations, is most likely to mirror the scaffold of a desired enzymatic function. Modeling the diversity in catalytic sites and providing precise user control to guide the search is a key goal of our implementation. The flow details have been worked out in a real-life example to select a plant protein to substitute for human neutrophil elastase in a chimeric antimicrobial enzyme designed to bolster the innate immune defense system in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lehninger A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  2. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44:98–104

    Article  PubMed  CAS  Google Scholar 

  3. Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105

    Article  Google Scholar 

  4. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  PubMed  CAS  Google Scholar 

  5. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    Article  PubMed  CAS  Google Scholar 

  6. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    Article  PubMed  CAS  Google Scholar 

  7. Lewis EB (1951) Pseudoallelism and gene evolution. Cold Spring Harb Symp Quant Biol 16:159–174

    Article  PubMed  CAS  Google Scholar 

  8. Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696

    PubMed  Google Scholar 

  9. Cirino PC, Mayer KM, Umeno D (2003) Generating mutant libraries using error-prone PCR. Methods Mol Biol 231:3–9

    PubMed  CAS  Google Scholar 

  10. Hall BG, Zuzel T (1980) Evolution of a new enzymatic function by recombination within a gene. Proc Natl Acad Sci U S A 77:3529–3533

    Article  PubMed  CAS  Google Scholar 

  11. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  PubMed  CAS  Google Scholar 

  12. Zhao H, Giver L, Shao Z et al (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    Article  PubMed  CAS  Google Scholar 

  13. Kolkman JA, Stemmer WP (2001) Directed evolution of proteins by exon shuffling. Nat Biotechnol 19:423–428

    Article  PubMed  CAS  Google Scholar 

  14. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499–503

    Article  PubMed  CAS  Google Scholar 

  15. Johns GC, Joyce GF (2005) The promise and peril of continuous in vitro evolution. J Mol Evol 61:253–263

    Article  PubMed  CAS  Google Scholar 

  16. Goddard JP, Reymond JL (2004) Enzyme assays for high-throughput screening. Curr Opin Biotechnol 15:314–322

    Article  PubMed  CAS  Google Scholar 

  17. Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23:231–237

    Article  PubMed  CAS  Google Scholar 

  18. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903

    Article  PubMed  CAS  Google Scholar 

  19. Climie S, Ruiz-Perez L, Gonzalez-Pacanowska D et al (1990) Saturation site-directed mutagenesis of thymidylate synthase. J Biol Chem 265:18776–18779

    PubMed  CAS  Google Scholar 

  20. Reetz MT, Carballeira JD, Peyralans J et al (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chemistry 12:6031–6038

    Article  PubMed  CAS  Google Scholar 

  21. Zanghellini A, Jiang L, Wollacott AM et al (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15:2785–2794

    Article  PubMed  CAS  Google Scholar 

  22. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87

    Article  PubMed  CAS  Google Scholar 

  23. Malisi C, Kohlbacher O, Hocker B (2009) Automated scaffold selection for enzyme design. Proteins 77:74–83

    Article  PubMed  CAS  Google Scholar 

  24. Georgiev I, Lilien RH, Donald BR (2008) The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 29:1527–1542

    Article  PubMed  CAS  Google Scholar 

  25. Lovell SC, Word JM, Richardson JS et al (2000) The penultimate rotamer library. Proteins 40:389–408

    Article  PubMed  CAS  Google Scholar 

  26. Kimura M (1986) DNA and the neutral theory. Philos Trans R Soc Lond B Biol Sci 312:343–354

    Article  PubMed  CAS  Google Scholar 

  27. Amitai G, Gupta RD, Tawfik DS (2007) Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 1:67–78

    Article  PubMed  CAS  Google Scholar 

  28. Wroe R, Chan HS, Bornberg-Bauer E (2007) A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP J 1:79–87

    Article  PubMed  CAS  Google Scholar 

  29. Bolon DN, Mayo SL (2001) Enzyme-like proteins by computational design. Proc Natl Acad Sci U S A 98:14274–14279

    Article  PubMed  CAS  Google Scholar 

  30. Jiang L, Althoff EA, Clemente FR et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  PubMed  CAS  Google Scholar 

  31. Faiella M, Andreozzi C, de Rosales RT et al (2009) An artificial di-iron oxo-protein with phenol oxidase activity. Nat Chem Biol 5:882–884

    Article  PubMed  CAS  Google Scholar 

  32. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313

    Article  PubMed  CAS  Google Scholar 

  33. Rothlisberger D, Khersonsky O, Wollacott AM et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  Google Scholar 

  34. Nannemann DP, Birmingham WR, Scism RA et al (2011) Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Future Med Chem 3:809–819

    Article  PubMed  CAS  Google Scholar 

  35. Dalby PA (2011) Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol 21:473–480

    Article  PubMed  CAS  Google Scholar 

  36. Lutz S (2010) Beyond directed evolution-semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743

    Article  PubMed  CAS  Google Scholar 

  37. Antikainen NM, Martin SF (2005) Altering protein specificity: techniques and applications. Bioorg Med Chem 13:2701–2716

    Article  PubMed  CAS  Google Scholar 

  38. Chakraborty S, Minda R, Salaye L et al (2011) Active site detection by spatial conformity and electrostatic analysis—unravelling a proteolytic function in shrimp alkaline phosphatase. PLoS One 6:e28470

    Article  PubMed  CAS  Google Scholar 

  39. Chakraborty S, Rao BJ (2012) A measure of the promiscuity of proteins and characteristics of residues in the vicinity of the catalytic site that regulate promiscuity. PLoS One 7:e32011

    Article  PubMed  CAS  Google Scholar 

  40. Yamamura K, Kaiser ET (1976) Studies on the oxidase activity of copper(ii) carboxypeptidase A. J Chem Soc, Chem Commun: 830–831

    Google Scholar 

  41. Chakraborty S (2012) An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues. PLoS One PLoS One. 2012;7(7):e40408. doi: 10.1371/journal.pone.0040408.

    Google Scholar 

  42. Savile CK, Janey JM, Mundorff EC et al (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    Article  PubMed  CAS  Google Scholar 

  43. Chen CY, Georgiev I, Anderson AC et al (2009) Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 106:3764–3769

    Article  PubMed  CAS  Google Scholar 

  44. Sandstrom AG, Wikmark Y, Engstrom K et al (2012) Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci U S A 109:78–83

    Article  PubMed  Google Scholar 

  45. Lobkovsky E, Moews PC, Liu H et al (1993) Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A 90:11257–11261

    Article  PubMed  CAS  Google Scholar 

  46. Jeffery CJ (2009) Moonlighting proteins—an update. Mol Biosyst 5:345–350

    Article  PubMed  CAS  Google Scholar 

  47. Macdonald SJ, Dowle MD, Harrison LA et al (2002) Discovery of further pyrrolidine trans-lactams as inhibitors of human neutrophil elastase (HNE) with potential as development candidates and the crystal structure of HNE complexed with an inhibitor (GW475151). J Med Chem 45:3878–3890

    Article  PubMed  CAS  Google Scholar 

  48. Dandekar AM, Gouran H, Ibanez AM et al (2012) An engineered innate immune defense protects grapevines from Pierce disease. Proc Natl Acad Sci U S A 109:3721–3725

    Article  PubMed  CAS  Google Scholar 

  49. Fernandez C, Szyperski T, Bruyere T et al (1997) NMR solution structure of the pathogenesis-related protein P14a. J Mol Biol 266:576–593

    Article  PubMed  CAS  Google Scholar 

  50. Stintzi A, Heitz T, Prasad V et al (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  PubMed  CAS  Google Scholar 

  51. Bernick JJ, Simpson W (1976) Distribution of elastase-like enzyme activity among snake venoms. Comp Biochem Physiol B 54:51–54

    Article  PubMed  CAS  Google Scholar 

  52. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  53. Dolinsky TJ, Nielsen JE, McCammon JA et al (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  PubMed  CAS  Google Scholar 

  54. Stajich JE, Block D, Boulez K et al (2002) The bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    Article  PubMed  CAS  Google Scholar 

  55. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  56. Ekici OD, Paetzel M, Dalbey RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17:2023–2037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to J. M. Frere (Centre for Protein Engineering, Universite de Liege, Institut de Chimie B6, Sart Tilman, B-4000 Liege, Belgium), Bjarni Asgeirsson (Science Institute, Department of Biochemistry, University of Iceland), Masataka Oda (Department of Microbiology, Faculty of Pharmaceutical Science, Tokushima Bunri University, Japan), and Felix M. Goni (Unidad de Biofisica (CSIC-UPV/EHU) and Departamento de Bioquimica, Universidad del Pais Vasco, Bilbao, Spain), for technical discussions, suggestions, and support. AMD acknowledges support received from the California Department of Food and Agriculture’s Pierce’s Disease Board to conduct this collaborative research. BJR acknowledges a J.C. Bose award fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Chakraborty, S., Minda, R., Salaye, L., Dandekar, A.M., Bhattacharjee, S.K., Rao, B.J. (2013). Promiscuity-Based Enzyme Selection for Rational Directed Evolution Experiments. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics