Skip to main content

Analysis of p300 Occupancy at the Early Stage of Stem Cell Differentiation by Chromatin Immunoprecipitation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 977))

Abstract

Chromatin immunoprecipitation (ChIP) is an invaluable method to study the specific interaction of regulatory proteins with genomic DNA. Since its first development, it has been modified extensively to make it applicable to many different cell types and experimental systems. The cross-linking of regulatory proteins to genomic DNA requires monolayer cells or single cell suspensions. Here, we describe a ChIP protocol using embryoid bodies formed at the early stage differentiation of pluripotent stem cells, which we have used to determine long-range p300-dependent regulatory elements of myogenic-specific genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Orlando V (2000) Mapping chromosomal ­proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  PubMed  CAS  Google Scholar 

  2. O’Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14:3946–3957

    PubMed  Google Scholar 

  3. O’Neill LP, Turner BM (1996) Immuno­precipitation of chromatin. Methods Enzymol 274:189–197

    Article  PubMed  Google Scholar 

  4. Nelson J, Denisenko O, Bomsztyk K (2009) The fast chromatin immunoprecipitation method. Methods Mol Biol 567:45–57

    Article  PubMed  CAS  Google Scholar 

  5. Thorne AW, Myers FA, Hebbes TR (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287:21–44

    PubMed  CAS  Google Scholar 

  6. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  PubMed  CAS  Google Scholar 

  7. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19:425–433

    Article  PubMed  CAS  Google Scholar 

  8. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  PubMed  CAS  Google Scholar 

  9. Flanagin S, Nelson JD, Castner DG et al (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36:e17

    Article  PubMed  Google Scholar 

  10. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 82: 6470–6474

    Article  PubMed  CAS  Google Scholar 

  11. Le May M, Mach H, Lacroix N et al (2011) Contribution of retinoid X receptor signaling to the specification of skeletal muscle lineage. J Biol Chem 286:26806–26812

    Article  PubMed  Google Scholar 

  12. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837

    Article  PubMed  CAS  Google Scholar 

  13. Huebert DJ, Kamal M, O’Donovan A et al (2006) Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40:365–369

    Article  PubMed  CAS  Google Scholar 

  14. Higazi A, Abed M, Chen J et al (2011) Promoter context determines the role of proteasome in ligand-dependent occupancy of retinoic acid responsive elements. Epigenetics 6:202–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Sciences and Engineering Research Council and Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Le May, M., Li, Q. (2013). Analysis of p300 Occupancy at the Early Stage of Stem Cell Differentiation by Chromatin Immunoprecipitation. In: Bina, M. (eds) Gene Regulation. Methods in Molecular Biology, vol 977. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-284-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-284-1_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-283-4

  • Online ISBN: 978-1-62703-284-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics