Comparative Genomic Hybridization of Wilms’ tumor

  • Shahrad Rod Rassekh
  • Evica Rajcan-Separovic
Part of the Methods in Molecular Biology book series (MIMB, volume 973)


Cytogenetic analysis of solid tumors including Wilms’ tumor is challenging due to poor chromosome morphology, complexity of abnormalities, and to the possibility of stromal cell overgrowth in tissue culture. Molecular cytogenetic techniques such as chromosomal comparative genomic hybridization (CGH) have improved the diagnosis of chromosomal aberrations in Wilms’ tumor since they can provide results based on the analysis of DNA from nondividing cells. However, chromosomal CGH provides only a limited resolution across the whole genome, which is not different than routine cytogenetic analysis (gains or losses of less than one chromosome band or 10 Mb are not detectable by routine cytogenetics or chromosomal CGH). More recently, the development of genomic arrays opened the possibility of assessing the whole genome at a much higher resolution at a sub-microscopic or sub-band level. Based on the principle of chromosomal CGH, this approach, frequently termed array-CGH, opens the possibility to find invisible changes at the whole genome level not only in abnormal but also in normal tumor karyotypes. Here, we discuss the main technical features, benefits, and limitations of the above three techniques as applied to Wilms’ tumor and summarize the main advances in our knowledge about the genetic changes of Wilms’ tumor and their clinical relevance.

Key words

Wilms’ tumor Nephroblastoma Kidney Pediatric Cancer Comparative genomic hybridization (CGH) Array CGH Cytogenetics 



The authors wish to thank the BC Children’s Hospital Telethon grant for funding the Wilms’ tumor chromosomal and array CGH study, Dr Dagmar Kalousek’s research laboratory for developing the chromosomal CGH method, and Dr Suzanne Chan, Chansonette Harvard, and Sally Martell for Wilms’ tumor cytogenetic, chromosomal, and array CGH analysis.


  1. 1.
    Stiller CA, Parkin DM (1990) International variations in the incidence of childhood renal tumors. Br J Cancer 62(6):1026–1030. doi: 10.1038/bjc.1990.432 PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106–130PubMedCrossRefGoogle Scholar
  3. 3.
    Jg G, Ml B (2006) Epidemiology of childhood cancer. Principles and practice of pediatric oncology, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Rance T (1814) Case of fungus haematodes of the kidneys. Med Phys J 32:19–25Google Scholar
  5. 5.
    Wilms M (1899) Die Mischgeschwülste der Niere. Leipzig: Verlag von Arthur Georgi; monograph, pp. 1–90.Google Scholar
  6. 6.
    Varan A (2008) Wilms’ Tumor in children: an overview. Nephron Clin Pract 108(2):C83–C90. doi: 10.1159/000113012 PubMedCrossRefGoogle Scholar
  7. 7.
    Faria P, Beckwith JB, Mishra K et al (1996) Focal versus diffuse anaplasia in wilms tumor: new definitions with prognostic significance—a report from the National Wilms Tumor Study Group. Am J Surg Pathol 20(8):909–920. doi: 10.1097/00000478-199608000-00001 PubMedCrossRefGoogle Scholar
  8. 8.
    Pritchard-Jones K (2002) Controversies and advances in the management of wilms’ tumour. Arch Dis Child 87(3):241–244. doi: 10.1136/adc.87.3.241 PubMedCrossRefGoogle Scholar
  9. 9.
    Narod SA, Hawkins MM, Robertson CM et al (1997) Congenital anomalies and childhood cancer in great britain. Am J Hum Genet 60(3):474–485PubMedGoogle Scholar
  10. 10.
    Merks JHM, Caron HN, Hennekam RCM (2005) High incidence of malformation syndromes in a series of 1,073 children with cancer. Am J Med Genet A 134A(2):132–143. doi: 10.1002/ajmg.a.30603 PubMedCrossRefGoogle Scholar
  11. 11.
    Denys P, Malvaux P, Vandenbe H et al (1967) Association dun syndrome anatomo-pathologique de pseudohermaphrodisme masculin dune tumeur de wilms dune nephropathie parenchymateuse et dun mosaicisme xx/xy. Arch Fr Pediatr 24(7):729–739PubMedGoogle Scholar
  12. 12.
    Drash A, Sherman F, Hartmann WH et al (1970) A syndrome of pseudohermaphroditism, wilms tumor, hypertension, and degenerative renal disease. J Pediatr 76(4):585–593. doi: 10.1016/s0022-3476(70)80409-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Riccardi VM, Sujansky E, Smith AC et al (1978) Chromosomal imbalance in aniridia-wilms tumor association—11p interstitial deletion. Pediatrics 61(4):604–610PubMedGoogle Scholar
  14. 14.
    Wiedeman H (1964) Familial malformation complex with umbilical hernia and macroglossia—a “new syndrome”? J Genet Hum 13:223–232Google Scholar
  15. 15.
    Beckwith J (1969) Macroglossia, omphalocele, adrenal cytomegally, gigantism, and hyperplastic visceromegaly. Birth Def 5:188–196Google Scholar
  16. 16.
    Grundy RG, Pritchard J, Baraitser M et al (1992) Perlman and Wiedemann–Beckwith syndromes—2 distinct conditions associated with wilms-tumor. Eur J Pediatr 151(12):895–898. doi: 10.1007/bf01954125 PubMedCrossRefGoogle Scholar
  17. 17.
    Hughesbenzie RM, Pilia G, Xuan JY et al (1996) Simpson-golabi-behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet 66(2):227–234. doi:10.1002/(sici)1096-8628(19961211)66:2<227::aid-ajmg20>;2-uCrossRefGoogle Scholar
  18. 18.
    Hoyme HE, Seaver LH, Jones KL et al (1998) Isolated hemihyperplasia (hemihypertrophy): report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet 79(4):274–278. doi:10.1002/(sici)1096-8628(19981002)79:4<274::aid-ajmg8>;2-mPubMedCrossRefGoogle Scholar
  19. 19.
    Scott RH, Stiller CA, Walker L et al (2006) Syndromes and constitutional chromosomal abnormalities associated with wilms tumour. J Med Genet 43(9):705–715. doi: 10.1136/jmg.2006.041723 PubMedCrossRefGoogle Scholar
  20. 20.
    Coppes MJ, Dekraker J, Vandijken PJ et al (1989) Bilateral wilms tumor—long-term survival and some epidemiological features. J Clin Oncol 7(3):310–315PubMedGoogle Scholar
  21. 21.
    Ritchey ML, Shamberger RC, Hamilton T et al (2005) Fate of bilateral renal lesions missed on preoperative imaging: a report from the National Wilms Tumor Study Group. J Urol 174(4):1519–1521. doi: 10.1097/01.ju.0000179536.97629.c5 PubMedCrossRefGoogle Scholar
  22. 22.
    Hoglund M, Gisselsson D, Hansen GB et al (2004) Wilms tumors develop through two distinct karyotypic pathways. Cancer Genet Cytogenet 150(1):9–15. doi: 10.1016/j.cancergencyto.2003.08.017 PubMedCrossRefGoogle Scholar
  23. 23.
    Md Zin R, Murch A, Charles A (2011) Pathology, genetics and cytogenetics of wilms’ tumour. Pathology 43(4):302–312. doi: 10.1097/PAT.0b013e3283463575 PubMedCrossRefGoogle Scholar
  24. 24.
    Gow KW, Murphy JJ (2002) Cytogenetic and histologic findings in wilms’ tumor. J Pediatr Surg 37(6):823–827. doi: 10.1053/jpsu.2002.32880 PubMedCrossRefGoogle Scholar
  25. 25.
    Rassekh S, Chan S, Harvard C et al (2008) Screening for submicroscopic chromosomal rearrangements in wilms tumor using whole-genome microarrays. Cancer Genet Cytogenet 182(2):84–94. doi: 10.1016/j.cancergencyto.2007.12.015 PubMedCrossRefGoogle Scholar
  26. 26.
    Kallioniemi A (2008) Cgh microarrays and cancer. Curr Opin Biotechnol 19(1):36–40. doi: 10.1016/j.copbio.2007.11.004 PubMedCrossRefGoogle Scholar
  27. 27.
    Lestou VS, Lomax BL, Barrett IJ et al (1999) Screening of human placentas for chromosomal mosaicism using comparative genomic hybridization. Teratology 59(5):325–330. doi:10.1002/(sici)1096-9926(199905)59: 5<325::aid-tera3>;2-nPubMedCrossRefGoogle Scholar
  28. 28.
    Lichter P, Joos S, Bentz M et al (2000) Comparative genomic hybridization: uses and limitations. Semin Hematol 37(4):348–357. doi: 10.1016/s0037-1963(00)90015-5 PubMedCrossRefGoogle Scholar
  29. 29.
    Wessendorf S, Lichter P, Schwanen C et al (2001) Potential of chromosomal and matrix-based comparative genomic hybridization for molecular diagnostics in lymphomas. Ann Hematol 80:B35–B37PubMedGoogle Scholar
  30. 30.
    Getman ME, Houseal TW, Miller GA et al (1998) Comparative genomic hybridization and its application to wilms’ tumorigenesis. Cytogenet Cell Genet 82(3–4):284–290. doi: 10.1159/000015120 PubMedCrossRefGoogle Scholar
  31. 31.
    Steenman M, Redeker B, Demeulemeester M et al (1997) Comparative genomic hybridization analysis of wilms tumors. Cytogenet Cell Genet 77(3–4):296–303. doi: 10.1159/000134602 PubMedCrossRefGoogle Scholar
  32. 32.
    Hing S, Lu YJ, Summersgill B et al (2001) Gain of 1q is associated with adverse outcome in favorable histology wilms’ tumors. Am J Pathol 158(2):393–398. doi: 10.1016/s0002-9440(10)63982-x PubMedCrossRefGoogle Scholar
  33. 33.
    Balliff BC, Rorem EA, Sundin K et al (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A 140A(24):2757–2767. doi: 10.1002/ajmg.a.31539 CrossRefGoogle Scholar
  34. 34.
    Cheung SW, Shaw CA, Scott DA et al (2007) Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A 143A(15):1679–1686. doi: 10.1002/ajmg.a.31740 PubMedCrossRefGoogle Scholar
  35. 35.
    Natrajan R, Williams RD, Hing SN et al (2006) Array CGH profiling of favourable histology wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210(1):49–58. doi: 10.1002/path.2021 PubMedCrossRefGoogle Scholar
  36. 36.
    Natrajan R, Williams RD, Grigoriadis A et al (2007) Delineation of a 1 Mb breakpoint region at 1p13 in wilms tumors by fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 46(6):607–615. doi: 10.1002/gcc.20446 PubMedCrossRefGoogle Scholar
  37. 37.
    Benetkiewicz M, De Stahl TD, Gordor A et al (2006) Identification of limited regions of genetic aberrations in patients affected with wilms’ tumor using a tiling-path chromosome 22 array. Int J Cancer 119(3):571–578. doi: 10.1002/ijc.21868 PubMedCrossRefGoogle Scholar
  38. 38.
    Natrajan R, Reis-Filho JS, Little SE et al (2006) Blastemal expression of type I insulin-like growth factor receptor in wilms’ tumors is driven by increased copy number and correlates with relapse. Cancer Res 66(23):11148–11155. doi: 10.1158/0008-5472.can-06-1931 PubMedCrossRefGoogle Scholar
  39. 39.
    Williams R, Al-Saadi R, Natrajan R et al (2011) Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in wilms tumor. Genes Chromosomes Cancer. doi: 10.1002/gcc.20907
  40. 40.
    Schaub R, Burger A, Bausch D et al (2007) Array comparative genomic hybridization reveals unbalanced gain of the MYCN region in wilms tumors. Cancer Genet Cytogenet 172(1):61–65. doi: 10.1016/j.cancergencyto.2006.08.010 PubMedCrossRefGoogle Scholar
  41. 41.
    Natrajan R, Little SE, Sodha N et al (2007) Analysis by array CGH of genomic changes associated with the progression or relapse of wilms’ tumour. J Pathol 211(1):52–59. doi: 10.1002/path.2087 PubMedCrossRefGoogle Scholar
  42. 42.
    Goldstein M, Rennert H, Bar-Shira A et al (2003) Combined cytogenetic and array-based comparative genomic hybridization analyses of wilms tumors: Amplification and overexpression of the multidrug resistance associated protein 1 gene (MRP1) in a metachronous tumor. Cancer Genet Cytogenet 141(2):120–127. doi: 10.1016/s0165-4608(02)00667-2 PubMedCrossRefGoogle Scholar
  43. 43.
    Rao P (2005) Comparative genomic hybridization for analysis of changes in DNA copy number in multiple myeloma. Methods Mol Med 113:71–83PubMedGoogle Scholar
  44. 44.
    Carless M (2009) Analysis of genomic aberrations using comparative genomic hybridization of metaphase chromosomes. Methods Mol Biol 523:177–202PubMedCrossRefGoogle Scholar
  45. 45.
    Cooper GM, Coe BP, Girirajan S et al (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43(9):838–846. doi: 10.1038/ng.909 PubMedCrossRefGoogle Scholar
  46. 46.
    Koolen DA, Pfundt R, De Leeuw N et al (2009) Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum Mutat 30(3):283–292. doi: 10.1002/humu.20883 PubMedCrossRefGoogle Scholar
  47. 47.
    Qiao Y, Harvard C, Tyson C et al (2010) Outcome of array cgh analysis for 255 subjects with intellectual disability and search for candidate genes using bioinformatics. Hum Genet 128(2):179–194. doi: 10.1007/s00439-010-0837-0 PubMedCrossRefGoogle Scholar
  48. 48.
    Kearney HM, Thorland EC, Brown KK et al (2011) American college of medical genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 13(7):680–685. doi: 10.1097/GIM.0b013e3182217a3a PubMedCrossRefGoogle Scholar
  49. 49.
    Natrajan R, Warren W, Messahel B et al (2008) Complex patterns of chromosome 9 alterations including the p16(INK4a) locus in wilms tumours. J Clin Pathol 61(1):95–102. doi: 10.1136/jcp.2007.047159 PubMedCrossRefGoogle Scholar
  50. 50.
    Ohshima J, Haruta M, Arai Y et al (2009) Two candidate tumor suppressor genes, MEOX2 and SOSTDC1, identified in a 7p21 homozygous deletion region in a wilms tumor. Genes Chromosomes Cancer 48(12):1037–1050. doi: 10.1002/gcc.20705 PubMedCrossRefGoogle Scholar
  51. 51.
    Hawthorn L, Cowell JK (2011) Analysis of wilms tumors using SNP mapping array-based comparative genomic hybridization. PLoS One 6(4):doi:e18941 10.1371/journal.pone.0018941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Shahrad Rod Rassekh
    • 1
    • 2
  • Evica Rajcan-Separovic
    • 3
    • 4
  1. 1.Division of Hematology/Oncology/BMT, Department of Pediatrics, British Columbia’s Children’s HospitalUniversity of British ColumbiaVancouverCanada
  2. 2.Child and Family Research InstituteVancouverCanada
  3. 3.Child and Family Research Institute, and Cytogenetics, BC Children’s HospitalUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations