Skip to main content

Solution NMR Spectroscopy for the Determination of Structures of Membrane Proteins in a Lipid Environment

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Several recent advancements have transformed solution NMR spectroscopy into a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or cell-free expression and purification of a suitably sized membrane protein has been achieved, then NMR offers a combination of several versatile strategies, for example, choice of appropriate deuterated or non-deuterated detergents, temperature, and ionic strength; isotope labelling with 2H, 13C, 15N, with or without protonation of Ile (δ1), Leu, and Val methyl protons; combinatorial labelling of specific amino acids; transverse relaxation-optimized NMR spectroscopy-based, Nonuniform sampling-based, and other NMR experiments; measurement of residual dipolar couplings using stretched polyacrylamide gels or DNA nanotubes; and spin-labelling and paramagnetic relaxation enhancements. Strategic combinations of these advancements together with availability of highly sensitive cryogenically cooled probes equipped high-field NMR spectrometers (up to 1 GHz 1H frequency) have allowed the perseverant investigator to successfully overcome several of the conventional pitfalls associated with the NMR technique and membrane proteins, viz., low sensitivity, poor sample stability, spectral crowding, and a limited number of NOEs and other constraints for structure calculations. This has resulted in an unprecedented growth in the number of successfully determined NMR structures of large and complex membrane proteins, and this technique now holds great promise for the structure determination of an ever larger body of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  2. Kim H et al (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci USA 103:11142–11147

    Article  PubMed  CAS  Google Scholar 

  3. Terstappen GC, Reggiani A (2001) In silico reseach in drug discovery. Trends Pharmacol Sci 22:23–26

    Article  PubMed  CAS  Google Scholar 

  4. http://www.drorlist.com/nmr/MPNMR.html

  5. Lomize MA et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  PubMed  CAS  Google Scholar 

  6. Tusnady GE, Dosztanyi Z, Simon I (2004) Transmembrane proteins in protein data bank: identification and classification. Bioinformatics 20:2964–2972

    Article  PubMed  CAS  Google Scholar 

  7. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci USA 104:16140–16145

    Article  PubMed  CAS  Google Scholar 

  8. Hiller S et al (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  PubMed  CAS  Google Scholar 

  9. Berardi MJ et al (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    Article  PubMed  CAS  Google Scholar 

  10. Zhou Y et al (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB catalyzed disulfide bond formation. Mol Cell 31:896–908

    Article  PubMed  CAS  Google Scholar 

  11. Van Horn WD et al (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729

    Article  PubMed  Google Scholar 

  12. Gautier A et al (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774

    Article  PubMed  CAS  Google Scholar 

  13. Baker KA et al (2007) Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14:1089–1095

    Article  PubMed  CAS  Google Scholar 

  14. Reckel S et al (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed 50:11942–11946

    Article  CAS  Google Scholar 

  15. Kim HJ et al (2009) Recent advances in the application of solution NMR spectroscopy to multispan integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  PubMed  CAS  Google Scholar 

  16. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    Article  PubMed  CAS  Google Scholar 

  17. Arora A et al (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 83:34–338

    Google Scholar 

  18. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  PubMed  CAS  Google Scholar 

  19. Battiste JL, Wagner G (2000) Utilization of site-directed spin labelling and high resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39:5355–5365

    Article  PubMed  CAS  Google Scholar 

  20. Hwang PM et al (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA 99:13560–13565

    Article  PubMed  CAS  Google Scholar 

  21. MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    Article  PubMed  CAS  Google Scholar 

  22. Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11:540–547

    Article  PubMed  CAS  Google Scholar 

  23. Edrington TC et al (2011) Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa. J Biol Chem 286:39211–39223

    Article  PubMed  CAS  Google Scholar 

  24. Williams KA et al (1996) Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. Biochemistry 35:5145–5157

    Article  PubMed  CAS  Google Scholar 

  25. Roosild TP et al (2005) NMR structure of Mistic, a membrane integrating protein for membrane protein expression. Science 307:1317–1321

    Article  PubMed  CAS  Google Scholar 

  26. Krueger-Koplin RD et al (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28:43–57

    Article  PubMed  CAS  Google Scholar 

  27. Tieleman DP, van der Spoel D, Berendsen HJ (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104:6380–6388

    Article  CAS  Google Scholar 

  28. Tamm LK et al (2003) Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR. FEBS Lett 555:139–143

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez C et al (2002) Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci USA 99:13533–13537

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez C, Adeishvili K, Wuthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci USA 98:2358–2363

    Article  PubMed  CAS  Google Scholar 

  31. Porcelli F et al (2004) Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem 279:45815–45823

    Article  PubMed  CAS  Google Scholar 

  32. Zamoon J et al (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85:2589–2598

    Article  PubMed  CAS  Google Scholar 

  33. Gorzelle BM et al (1999) Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Biochemistry 38:16373–16382

    Article  PubMed  CAS  Google Scholar 

  34. Pervushin K et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  PubMed  CAS  Google Scholar 

  36. Tugarinov V et al (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g. J Am Chem Soc 124:10025–10035

    Article  PubMed  CAS  Google Scholar 

  37. Shen Y et al (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  PubMed  CAS  Google Scholar 

  38. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401

    Article  PubMed  CAS  Google Scholar 

  39. Ikura M et al (1990) Detection of nuclear Overhauser effects between degenerate amide proton resonances by heteronuclear three-dimensional NMR spectroscopy. J Am Chem Soc 112:9020–9022

    Article  CAS  Google Scholar 

  40. Fernandez C et al (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336:1211–1221

    Article  PubMed  CAS  Google Scholar 

  41. Renault M et al (2009) Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications. J Mol Biol 385:117–130

    Article  PubMed  CAS  Google Scholar 

  42. Lau TL et al (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    Article  PubMed  CAS  Google Scholar 

  43. Yu L et al (2005) Nuclear magnetic resonance structural studies of a potassium channel−charybdotoxin complex. Biochemistry 44:15834–15841

    Article  PubMed  CAS  Google Scholar 

  44. Prestegard JH, al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33:371–424

    Article  PubMed  CAS  Google Scholar 

  45. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16

    Article  PubMed  CAS  Google Scholar 

  46. de Alba E, Tjandra N (2004) Residual dipolar couplings in protein structure determination. Methods Mol Biol 278:89–106

    PubMed  Google Scholar 

  47. Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15:563–570

    Article  PubMed  CAS  Google Scholar 

  48. Cierpicki T, Bushweller JH (2004) Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J Am Chem Soc 126:16259–16266

    Article  PubMed  CAS  Google Scholar 

  49. Mascioni A, Eggimann BL, Veglia G (2004) Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban. Chem Phys Lipids 132:133–144

    Article  PubMed  CAS  Google Scholar 

  50. Meier S, Haussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24:351–356

    Article  PubMed  CAS  Google Scholar 

  51. Ulmer TS et al (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191

    Article  PubMed  CAS  Google Scholar 

  52. Pautsch A, Schulz GE (2000) High-resolution structure of the OmpA membrane domain. J Mol Biol 298:273–282

    Article  PubMed  CAS  Google Scholar 

  53. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 271:283–298

    Article  Google Scholar 

  54. Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr 54:905–921

    CAS  Google Scholar 

  55. Schwieters CD et al (2003) The Xplore-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  PubMed  CAS  Google Scholar 

  56. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  CAS  Google Scholar 

  57. Hilty C et al (2004) Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Chembiochem 5:467–473

    Article  PubMed  CAS  Google Scholar 

  58. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  59. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules II. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  60. Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  PubMed  CAS  Google Scholar 

  61. Wang C, Rance M, Palmer AGIII (2003) Mapping chemical exchange in proteins with MW > 50 kD. J Am Chem Soc 125:8968–8969

    Article  PubMed  CAS  Google Scholar 

  62. Liang B, Arora A, Tamm LK (2010) Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data. Biochim Biophys Acta 1798:68–76

    Article  PubMed  CAS  Google Scholar 

  63. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci USA 101:9618–9623

    Article  PubMed  CAS  Google Scholar 

  64. Cierpicki T et al (2006) Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A. J Am Chem Soc 128:6947–6951

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arora, A. (2013). Solution NMR Spectroscopy for the Determination of Structures of Membrane Proteins in a Lipid Environment. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics