Advertisement

A Guide to Tracking Single Transmembrane Proteins in Supported Lipid Bilayers

  • Kumud Raj Poudel
  • Jeffrey P. Jones
  • James A. BrozikEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 974)

Abstract

The purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single transmembrane proteins in planar supported membrane biomimetics. This chapter describes, in detail, the construction of a simple single-molecule microscope, which includes (1) a parts list, (2) an alignment procedure, (3) a calibration procedure, and (4) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported POPC bilayers on hydrophilically treated borosilicate and quartz, POPC/PEG-PE cushioned bilayers on hydrophilically treated surfaces, and POPC/PEG-PE cushioned bilayers on BSA passivated substrates. The procedure for the detergent-mediated incorporation of the transmembrane protein 5HT3A (a serotonin receptor) is also described and can be used as a starting point for other large non-self-inserting transmembrane proteins. The final experimental section of this chapter details different procedures for data analysis including (1) a quantitative analysis of mean displacements from individually tracked particles, (2) a Gaussian analysis of step-size distributions, (3) the Gaussian analysis of diffusion coefficients from ensembles of transmembrane proteins, and (4) a perspective associated with the interpretation of single-particle tracking data.

Key words

Single-molecule spectroscopy Biomimetics Protein diffusion Transmembrane protein In vitro protein studies Single-molecule instrument design Single-molecule tracking 

References

  1. 1.
    Thompson AJ, Lummis SCR (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11:527–540PubMedCrossRefGoogle Scholar
  2. 2.
    Poudel KR, Keller DJ, Brozik JA (2011) Single particle tracking reveals corralling of a transmembrane protein in a double-cushioned lipid bilayer assembly. Langmuir 27(1):320–327PubMedCrossRefGoogle Scholar
  3. 3.
    Diaz JA, Albertorio F, Daniel S, Cremer SP (2008) Double cushions preserve transmembrane protein mobility in supported bilayer systems. Langmuir 24:6820–6826PubMedCrossRefGoogle Scholar
  4. 4.
    Isas JM, Cartailler JP, Sokolov Y, Patel DR, Langen R, Luecke H, James E, Haigler HT (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39(11):3015–3022PubMedCrossRefGoogle Scholar
  5. 5.
    Trubetskoy VS, Torchilin VP (1995) Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 16(2–3):311–320CrossRefGoogle Scholar
  6. 6.
    Schwendener RA, Asanger M, Weder HG (1981) n-Alkyl-glucosides as detergents for the preparation of highly homogeneous bilayer liposomes of variable sizes (60–240 nm [phi]) applying defined rates of detergent removal by dialysis. Biochem Biophys Res Commun 100(3):1055–1062PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu J, Xue J, Guo Z, Zhang L, Marchant RE (2007) Biomimetic glycoliposomes as nanocarriers for targeting P-selectin on activated platelets. Bioconjug Chem 18(5):1366–1369PubMedCrossRefGoogle Scholar
  8. 8.
    Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci 93(26):15047PubMedCrossRefGoogle Scholar
  9. 9.
    Charvolin D, Perez JB, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci 106(2):405PubMedCrossRefGoogle Scholar
  10. 10.
    Eytan GD (1982) Use of liposomes for reconstitution of biological functions. Biochimica et Biophysica Acta 694(2):185PubMedCrossRefGoogle Scholar
  11. 11.
    Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528(1–3):251–256PubMedCrossRefGoogle Scholar
  12. 12.
    Wallach DFH (1990) Lipid vesicles formed of surfactants and steroids. US Patent 4:452–895Google Scholar
  13. 13.
    Srinivasan MP, Ratto TV, Stroeve P, Longo ML (2001) Patterned supported bilayers on self-assembled monolayers: confinement of adjacent mobile bilayers. Langmuir 17(25):7951–7954CrossRefGoogle Scholar
  14. 14.
    Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for the reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414PubMedCrossRefGoogle Scholar
  15. 15.
    Albertorio F, Diaz JA, Yang T, Chapa AV, Kataoka S, Castellana TE, Cremer SP (2005) Fluid and air stable lipopolymer membranes for biosensor applications. Langmuir 21:7476–7482PubMedCrossRefGoogle Scholar
  16. 16.
    Diaz AJ, Albertorio F, Daniel S, Cremer PS (2008) Double cushions preserve transmembrane protein mobility in supported bilayer systems. Langmuir 24(13):6820–6826PubMedCrossRefGoogle Scholar
  17. 17.
    Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47(1):105–113PubMedCrossRefGoogle Scholar
  18. 18.
    Davis RW, Flores A, Barrick TA, Cox JM, Brozik SM, Lopez GP, Brozik JA (2007) Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins. Langmuir 23(7):3864–3872PubMedCrossRefGoogle Scholar
  19. 19.
    Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310CrossRefGoogle Scholar
  20. 20.
    Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26(1):373–399PubMedCrossRefGoogle Scholar
  21. 21.
    McCain KS, Hanley DC, Harris JM (2003) Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol–gel films. Anal Chem 75(17):4351–4359PubMedCrossRefGoogle Scholar
  22. 22.
    Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36(Pt 6):1472PubMedCrossRefGoogle Scholar
  23. 23.
    Wennmalm S, Simon SM (2007) Studying individual events in biology. Annu Rev Biochem 76:419–446PubMedCrossRefGoogle Scholar
  24. 24.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378PubMedCrossRefGoogle Scholar
  25. 25.
    Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72:1744–1753PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kumud Raj Poudel
    • 1
  • Jeffrey P. Jones
    • 1
  • James A. Brozik
    • 1
    Email author
  1. 1.Department of ChemistryWashington State UniversityPullmanUSA

Personalised recommendations