Skip to main content

Analyzing the Cytoskeletal Transcriptome: Sex Differences in Rat Hypothalamus

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 79))

Abstract

This chapter presents the protocol established in our laboratory to determine the cytoskeletal genomic fabric (CGF), defined as the most inter-coordinately and stably expressed gene web whose encoding proteins form the intracellular scaffolding. In addition to detailed experimental procedures and conventional bioinformatics, novel analytical tools are introduced to reveal hidden features of the cytoskeletal transcriptome. Thus, the Prominent Gene Analysis ranks CGF genes according to their contribution to fabric synchronous expression and robustness against variable conditions, Pair-Wise Relevance determines the fabric topology, and the “transcriptomic distance” quantifies fabric differences between conditions. The new tools use expanded transcriptomic quantifiers, considering not only the expression level but also the control and intercoordination of the fabric genes.

This method is here used to analyze the sex differences in rat hypothalamic CGF and the transcriptomic networks by which CGF and the myelination genomic fabric (MGF) modulate each other. The analysis revealed profound differences between the adult males and estrus-stage females in the CGF topology and CGF–MGF interaction that can provide a basis for the substantial sex dichotomy in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194(4):513–525, Review

    Article  PubMed  CAS  Google Scholar 

  2. Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18(1):95–101

    Article  PubMed  CAS  Google Scholar 

  3. Niewiadomska G, Baksalerska-Pazera M, Riedel G (2006) Cytoskeletal transport in the aging brain: focus on the cholinergic system. Rev Neurosci 17(6):581–618, Review

    PubMed  CAS  Google Scholar 

  4. Evans JP, Robinson DN (2011) The spatial and mechanical challenges of female meiosis. Mol Reprod Dev 78(10–11):769–777

    Article  PubMed  CAS  Google Scholar 

  5. Richter-Landsberg C (2008) The cytoskeleton in oligodendrocytes. Microtubule dynamics in health and disease. J Mol Neurosci 35(1):55–63, Review

    Article  PubMed  CAS  Google Scholar 

  6. Susuki K, Raphael AR, Ogawa Y et al (2011) Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A 108(19):8009–8014

    Article  PubMed  CAS  Google Scholar 

  7. Kreft M, Potokar M, Stenovec M et al (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30–42, Review

    Article  PubMed  CAS  Google Scholar 

  8. Morin X, Bellaïche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21(1):102–119, Review

    Article  PubMed  CAS  Google Scholar 

  9. Quintá HR, Galigniana NM, Erlejman AG et al (2011) Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 23(12):1907–1920

    Article  PubMed  Google Scholar 

  10. Sandbo N, Dulin N (2011) Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 158(4):181–196

    Article  PubMed  CAS  Google Scholar 

  11. Dupin I, Etienne-Manneville S (2011) Nuclear positioning: mechanisms and functions. Int J Biochem Cell Biol 43:1698–1707

    Article  PubMed  CAS  Google Scholar 

  12. Lau CL, PerreauVM CMJ et al (2011) Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 227:1199–1211. doi:10.1002/jcp.22838

    Article  Google Scholar 

  13. Iacobas DA, Iacobas S, Spray DC (2007) Connexin43 and the brain transcriptome of the newborn mice. Genomics 89(1):113–123

    Article  PubMed  CAS  Google Scholar 

  14. Iacobas DA, Urban M, Iacobas S et al (2003) Array analysis of gene expression in connexin43 null astrocytes. Physiol Genomics 15(3):177–190

    PubMed  CAS  Google Scholar 

  15. Iacobas DA, Iacobas S, Li WEI et al (2005) Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics 20:211–223

    PubMed  CAS  Google Scholar 

  16. Spray DC, Iacobas DA (2007) Organizational principles of the connexin-related brain transcriptome. J Membr Biol 218(1–3):39–47

    PubMed  CAS  Google Scholar 

  17. Iacobas DA, Iacobas S, Urban-Maldonado M et al (2008) Similar transcriptomic alterations in Cx43 knock-down and knock-out astrocytes. Cell Commun Adhes 15(1):195–206

    Article  PubMed  CAS  Google Scholar 

  18. Iacobas DA, Iacobas S, Haddad GG (2010) Heart rhythm genomic fabric in hypoxia. Biochem Biophys Res Commun 391(4):1769–1774

    Article  PubMed  CAS  Google Scholar 

  19. Iacobas DA, Iacobas S, Thomas N et al (2010) Sex-dependent gene regulatory networks of the heart rhythm. Funct Integr Genomics 10(1):73–86

    Article  PubMed  CAS  Google Scholar 

  20. Iacobas S, Iacobas DA (2011) Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol 6(3):157–169

    Article  Google Scholar 

  21. Draghici S (2003) Data analysis tools for DNA microarrays. Chapman & Hall, Boca Raton, pp 223–224

    Book  Google Scholar 

  22. Stekel D (2003) Microarray bioinformatics. Cambridge University Press, Cambridge, pp 133–134

    Book  Google Scholar 

  23. Wu MC, Lin X (2009) Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways. Stat Methods Med Res 18(6):577–593

    Article  PubMed  Google Scholar 

  24. Iacobas DA, Iacobas S, Werner P et al (2007) Alteration of transcriptomic networks in adoptive-transfer experimental autoimmune encephalomyelitis. Front Integr Neurosci 1:10. doi:10.3389/neuro.07/010.2007

    Article  PubMed  Google Scholar 

  25. Iacobas DA, Suadicani SO, Spray DC et al (2006) A stochastic 2D model of intercellular Ca2+ wave spread in glia. Biophys J 90(1):24–41

    Article  PubMed  CAS  Google Scholar 

  26. Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94(1–2):168–184

    Google Scholar 

  27. Iacobas S, Thomas NM, Iacobas DA (2012) Plasticity of the myelination genomic fabric. Mol Genet Genomics 287(3):237–246

    Article  PubMed  CAS  Google Scholar 

  28. Bauer NG, Richter-Landsberg C, Ffrench-Constant C (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57(16):1691–1705, Review

    Article  PubMed  Google Scholar 

  29. Boggs JM, Gao W, Zhao J et al (2010) Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes. FEBS Lett 584(9):1771–1778

    Article  PubMed  CAS  Google Scholar 

  30. Iacobas DA, Iacobas S, Urban-Maldonado M et al (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196

    Article  PubMed  CAS  Google Scholar 

  31. Creighton J, Zhu B, Alexeyev M et al (2008) Spectrin-anchored phosphodiesterase4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci 121(Pt 1):110–119

    Article  PubMed  CAS  Google Scholar 

  32. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63(17):1945–1961, Review

    Article  PubMed  CAS  Google Scholar 

  33. Harauz G, Ladizhansky V, Boggs JM (2009) Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48(34):8094–8104, Review

    Article  PubMed  CAS  Google Scholar 

  34. Ortiz EH, Pasquini LA, Soto EF et al (2005) Apotransferrin and the cytoskeleton of oligodendroglial cells. J Neurosci Res 82(6):822–830

    Article  PubMed  CAS  Google Scholar 

  35. Rodríguez-Rodríguez RA, Tabernero A, Velasco A et al (2004) Theneurotrophic effect of oleic acid includes dendritic differentiation and the expression of the neuronal basic helix-loop-helix transcription factor NeuroD2. J Neurochem 88(5):1041–1051

    Article  PubMed  Google Scholar 

  36. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:article17

    PubMed  Google Scholar 

  37. Kang HJ, Kawasawa YI, Cheng F et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489

    Article  PubMed  CAS  Google Scholar 

  38. Soares MB, Lima RS, Souza BS, Vasconcelos JF, Rocha LL, Dos Santos RR, Iacobas S, Goldenberg RC, Lisanti MP, Iacobas DA, Tanowitz HB, Spray DC, Campos de Carvalho AC (2011) Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle 10:1448–1455

    Article  PubMed  CAS  Google Scholar 

  39. Lachtermacher S, Esporcatte BL, Fortes Fda S, Rocha NN, Montalvão F, Costa PC, Belem L, Rabischoffisky A, Faria Neto HC, Vasconcellos R, Iacobas DA, Iacobas S, Spray DC, Thomas NM, Goldenberg RC, de Carvalho AC (2012) Functional and transcriptomic recovery of infarcted mouse myocardium treated with bone marrow mononuclear cells. Stem Cell Rev 8(1):251–261

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Dr. David C. Spray’s (Einstein) comments on biological interpretation of experimental data are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Andrei Iacobas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iacobas, S., Neal-Perry, G., Iacobas, D.A. (2013). Analyzing the Cytoskeletal Transcriptome: Sex Differences in Rat Hypothalamus. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics