Dopamine pp 123-138 | Cite as

Dopaminergic Regulation of Dendritic Calcium: Fast Multisite Calcium Imaging

  • Wen-Liang Zhou
  • Katerina D. Oikonomou
  • Shaina M. Short
  • Srdjan D. Antic
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 964)

Abstract

Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

Key words

Action potential Backpropagation Voltage-gated calcium channels dopaminergic modulation Dopamine receptors Dendritic excitability Phasic dopamine signal 

Notes

Acknowledgments

This work was supported by an R01 grant from National Institutes of Health (NIH)—grant number MH063503, and the NARSAD Young Investigator Award to S.D.A.

References

  1. 1.
    Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932PubMedCrossRefGoogle Scholar
  2. 2.
    Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186PubMedCrossRefGoogle Scholar
  3. 3.
    Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci U S A 86:9015–9019PubMedCrossRefGoogle Scholar
  4. 4.
    Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138PubMedCrossRefGoogle Scholar
  5. 5.
    Milojkovic BA, Radojicic MS, Goldman-Rakic PS, Antic SD (2004) Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J Physiol 558:193–211PubMedCrossRefGoogle Scholar
  6. 6.
    Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627PubMedCrossRefGoogle Scholar
  7. 7.
    Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760PubMedCrossRefGoogle Scholar
  8. 8.
    Bito H, Deisseroth K, Tsien RW (1997) Ca2  +  -dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7:419–429PubMedCrossRefGoogle Scholar
  9. 9.
    Lisman J, Malenka RC, Nicoll RA, Malinow R (1997) Learning mechanisms: the case for CaM-KII. Science 276:2001–2002PubMedCrossRefGoogle Scholar
  10. 10.
    Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313PubMedCrossRefGoogle Scholar
  11. 11.
    Lohmann C (2009) Calcium signaling and the development of specific neuronal connections. Prog Brain Res 175:443–452PubMedCrossRefGoogle Scholar
  12. 12.
    Yu LM, Goda Y (2009) Dendritic signaling and homeostatic adaptation. Curr Opin Neurobiol 19:327–335PubMedCrossRefGoogle Scholar
  13. 13.
    Manita S, Ross WN (2009) Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. J Neurosci 29:7833–7845PubMedCrossRefGoogle Scholar
  14. 14.
    Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22:115–124PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura T, Barbara JG, Nakamura K, Ross WN (1999) Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24:727–737PubMedCrossRefGoogle Scholar
  16. 16.
    Hagenston AM, Fitzpatrick JS, Yeckel MF (2007) MGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb Cortex 18(2):407–23PubMedCrossRefGoogle Scholar
  17. 17.
    Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246PubMedCrossRefGoogle Scholar
  18. 18.
    Markram H, Helm PJ, Sakmann B (1995) Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J Physiol 485:1–20PubMedGoogle Scholar
  19. 19.
    Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165PubMedCrossRefGoogle Scholar
  20. 20.
    Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567PubMedGoogle Scholar
  21. 21.
    Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature 345:807–810PubMedCrossRefGoogle Scholar
  22. 22.
    Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9:1163–1173PubMedCrossRefGoogle Scholar
  23. 23.
    Denk W, Yuste R, Svoboda K, Tank DW (1996) Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol 6:372–378PubMedCrossRefGoogle Scholar
  24. 24.
    Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:151–155PubMedCrossRefGoogle Scholar
  25. 25.
    Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966PubMedCrossRefGoogle Scholar
  26. 26.
    Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289PubMedCrossRefGoogle Scholar
  27. 27.
    Milojkovic BA, Zhou WL, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585:447–468PubMedCrossRefGoogle Scholar
  28. 28.
    Major G, Polsky A, Denk W, Schiller J, Tank DW (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99:2584–2601PubMedCrossRefGoogle Scholar
  29. 29.
    Cox CL, Denk W, Tank DW, Svoboda K (2000) Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci U S A 97:9724–9728PubMedCrossRefGoogle Scholar
  30. 30.
    Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol 3:625–646CrossRefGoogle Scholar
  31. 31.
    Wachowiak M, Cohen LB (2001) Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:723–735PubMedCrossRefGoogle Scholar
  32. 32.
    Brown JE, Cohen LB, De Weer P, Pinto LH, Ross WN, Salzberg BM (1975) Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J 15:1155–1160PubMedCrossRefGoogle Scholar
  33. 33.
    Ross WN, Arechiga H, Nicholls JG (1987) Optical recording of calcium and voltage transients following impulses in cell bodies and processes of identified leech neurons in culture. J Neurosci 7:3877–3887PubMedGoogle Scholar
  34. 34.
    Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW (1994) Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for two functional compartments. Neuron 13:23–43PubMedCrossRefGoogle Scholar
  35. 35.
    Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004(219):l5CrossRefGoogle Scholar
  36. 36.
    Homma R, Baker BJ, Jin L, Garaschuk O, Konnerth A, Cohen LB, Zecevic D (2009) Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Philos Trans R Soc Lond B Biol Sci 364:2453–2467PubMedCrossRefGoogle Scholar
  37. 37.
    Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671PubMedCrossRefGoogle Scholar
  38. 38.
    Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301PubMedCrossRefGoogle Scholar
  39. 39.
    Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115PubMedCrossRefGoogle Scholar
  40. 40.
    Kisilevsky AE, Mulligan SJ, Altier C, Iftinca MC, Varela D, Tai C, Chen L, Hameed S, Hamid J, Macvicar BA, Zamponi GW (2008) D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron 58:557–570PubMedCrossRefGoogle Scholar
  41. 41.
    Gulledge AT, Stuart GJ (2003) Action potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation. J Neurosci 23:11363–11372PubMedGoogle Scholar
  42. 42.
    Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedCrossRefGoogle Scholar
  43. 43.
    Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550:35–50PubMedCrossRefGoogle Scholar
  44. 44.
    Milojkovic BA, Wuskell JP, Loew LM, Antic SD (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208:155–169PubMedCrossRefGoogle Scholar
  45. 45.
    Foust A, Popovic M, Zecevic D, McCormick DA (2010) Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 30:6891–6902PubMedCrossRefGoogle Scholar
  46. 46.
    Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82:1615–1621PubMedGoogle Scholar
  47. 47.
    Zhou WL, Yan P, Wuskell JP, Loew LM, Antic SD (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27(4):923–936Google Scholar
  48. 48.
    Canepari M, Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg BM, Grinvald A, Antic SD, Zecevic D (2010) Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. In: Canepari M, Zecevic D (eds) Membrane potential imaging in the nervous system: methods and applications. Springer Science+Business Media, LLC, New YorkGoogle Scholar
  49. 49.
    Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632PubMedCrossRefGoogle Scholar
  50. 50.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRefGoogle Scholar
  51. 51.
    Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937PubMedGoogle Scholar
  52. 52.
    Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135PubMedCrossRefGoogle Scholar
  53. 53.
    Tsubokawa H, Ross WN (1997) Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 17:5782–5791PubMedGoogle Scholar
  54. 54.
    Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials. J Neurophysiol 81:408–411PubMedGoogle Scholar
  55. 55.
    Djurisic M, Antic S, Chen WR, Zecevic D (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24:6703–6714PubMedCrossRefGoogle Scholar
  56. 56.
    Milojkovic BA, Radojicic MS, Antic SD (2005) A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J Neurosci 25:3940–3951PubMedCrossRefGoogle Scholar
  57. 57.
    Antic SD, Acker CD, Zhou WL, Moore AR, Milojkovic BA (2007) The role of dendrites in the maintenance of the UP state. In: Timofeev I (ed) Mechanisms of spontaneous active states in the neocortex. Research Signpost, Kerala, India, pp 45–72Google Scholar
  58. 58.
    Acker CD, Antic SD (2009) Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J Neurophysiol 101:1524–1541PubMedCrossRefGoogle Scholar
  59. 59.
    Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD (2010) The decade of the dendritic NMDA spike. J Neurosci Res 88:2991–3001PubMedCrossRefGoogle Scholar
  60. 60.
    Antic SD, Acker CD, Zhou WL, Moore AR (2008) Dopaminergic modulation of dendritic excitability in neocortical pyramidal neurons. Cell Science Reviews 5:1742–8130Google Scholar
  61. 61.
    Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci 24:1689–1699PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Wen-Liang Zhou
    • 1
  • Katerina D. Oikonomou
    • 1
  • Shaina M. Short
    • 1
  • Srdjan D. Antic
    • 1
  1. 1.Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations