Dopamine pp 95-105 | Cite as

Detection of Receptor Heteromers Involving Dopamine Receptors by the Sequential BRET-FRET Technology

  • Gemma Navarro
  • Peter J. McCormick
  • Josefa Mallol
  • Carme Lluís
  • Rafael Franco
  • Antoni Cortés
  • Vicent Casadó
  • Enric I. Canela
  • Sergi FerréEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 964)


Until very recently, dopamine receptors, like other G-protein-coupled receptors, were believed to function as individual units on the cell surface. Now it has been described by several groups including ours that dopamine receptors not only function as homomers but also form heteromers with other receptors at the membrane level. Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) based techniques have been very useful to determine the interaction between two receptors, but to demonstrate the existence of higher-order complexes involving more than two molecules requires more sophisticated techniques. Combining BRET and FRET in the Sequential BRET-FRET (SRET) technique permits heteromers formed by three different proteins to be identified. In SRET experiments, the oxidation of a Renilla Luciferase substrate triggers acceptor excitation by BRET and subsequent energy transfer to a FRET acceptor. Using this methodology here we describe the heteromerization between adenosine A2A, dopamine D2, and cannabinoids CB1 receptors in living cells.

Key words

Dopamine receptors Dopamine receptors interacting proteins BRET FRET Sequential resonance energy transfer GPCR Receptor oligomerization Heteromer Protein–protein interaction 



Study supported by grants from Spanish Ministerio de Ciencia y Tecnología (SAF2008-00146, SAF2008-03229-E, and SAF2009-07276), grant 060110 from Fundació La Marató de TV3 and by the Intramural Funds of the National Institute on Drug Abuse.


  1. 1.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225PubMedGoogle Scholar
  2. 2.
    Ng GY, Mouillac B, George SR, Caron M, Dennis M, Bouvier M, O’Dowd BF (1994) Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol 267:7–19PubMedCrossRefGoogle Scholar
  3. 3.
    Kong MM, Fan T, Varghese G, O’Dowd BF, George SR (2006) Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homo-oligomer. Mol Pharmacol 70:78–89PubMedGoogle Scholar
  4. 4.
    George SR, Lee SP, Varghese G, Zeman PR, Seeman P, Ng GY, O’Dowd BF (1998) A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J Biol Chem 273:30244–30248PubMedCrossRefGoogle Scholar
  5. 5.
    Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304PubMedCrossRefGoogle Scholar
  6. 6.
    Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 9:688–695CrossRefGoogle Scholar
  7. 7.
    Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 9:654–659CrossRefGoogle Scholar
  8. 8.
    Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283:26016–26025PubMedCrossRefGoogle Scholar
  9. 9.
    Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74:59–69PubMedCrossRefGoogle Scholar
  10. 10.
    So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF, George SR (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854PubMedCrossRefGoogle Scholar
  11. 11.
    Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R (2009) Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol 157:64–75PubMedCrossRefGoogle Scholar
  12. 12.
    Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O’Dowd BF (2008) Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Eur J Pharmacol 581:235–243PubMedCrossRefGoogle Scholar
  13. 13.
    Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferré S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization. Qualitative and quantitative assessment by fluorescence and bioluminescence resonance energy transfer. J Biol Chem 278:46741–46749PubMedCrossRefGoogle Scholar
  14. 14.
    Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134PubMedCrossRefGoogle Scholar
  15. 15.
    Casadó V, Cortés A, Mallol J, Pérez-Capote K, Ferré S, Lluis C, Franco R, Canela EI (2009) GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers? Pharmacol Ther 124: 248–257PubMedCrossRefGoogle Scholar
  16. 16.
    Ferré S, Lluís C, Lanciego JL, Cortés A, Mallol J, Canela EI, Lluís C, Franco R (2010) G protein-coupled receptor heteromers as new targets for drug development. CNS Neurol Disord Drug Targets 9:596–600PubMedGoogle Scholar
  17. 17.
    Ferré S, Navarro G, Casadó V, Cortés A, Mallol J, Canela EI, Lluís C, Franco R (2010) G protein-coupled receptor heteromers as new targets for drug development. Prog Mol Biol Transl Sci 91:41–52PubMedCrossRefGoogle Scholar
  18. 18.
    Milligan G (2004) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 21:397–405PubMedCrossRefGoogle Scholar
  19. 19.
    Pfleger KD, Eidne KA (2005) Monitoring the formation of the dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385:625–637PubMedCrossRefGoogle Scholar
  20. 20.
    Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365PubMedCrossRefGoogle Scholar
  21. 21.
    Cabello N, Gandía J, Bertarelli DC, Watanabe M, Lluís C, Franco R, Ferré S, Luján R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2A receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507PubMedCrossRefGoogle Scholar
  22. 22.
    Navarro G, Carriba P, Gandía J, Ciruela F, Casadó V, Cortés A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. ScientificWorldJournal 8:1088–1097PubMedCrossRefGoogle Scholar
  23. 23.
    Carriba P, Navarro G, Ciruela F, Ferré S, Casadó V, Agnati L, Cortés A, Mallol J, Fuxe K, Canela EI, Lluís C, Franco R (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733PubMedCrossRefGoogle Scholar
  24. 24.
    Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharma­cology 32:2249–2259PubMedCrossRefGoogle Scholar
  25. 25.
    Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Gemma Navarro
    • 1
  • Peter J. McCormick
    • 1
  • Josefa Mallol
    • 1
  • Carme Lluís
    • 1
  • Rafael Franco
    • 1
  • Antoni Cortés
    • 2
  • Vicent Casadó
    • 2
  • Enric I. Canela
    • 2
  • Sergi Ferré
    • 3
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Biochemistry and Molecular Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Health and Human ServicesIntramural Research Program, National Institute on Drug Abuse, National Institutes of HealthBaltimoreUSA

Personalised recommendations