Advertisement

Dopamine pp 275-294 | Cite as

Real-Time Chemical Measurements of Dopamine Release in the Brain

  • James G. Roberts
  • Leyda Z. Lugo-Morales
  • Philip L. Loziuk
  • Leslie A. SombersEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 964)

Abstract

Rapid changes in extracellular dopamine concentrations in freely moving or anesthetized rats can be detected using fast-scan cyclic voltammetry (FSCV). Background-subtracted FSCV is a real-time electrochemical technique that can monitor neurochemical transmission in the brain on a subsecond timescale, while providing chemical information on the analyte. Also, this voltammetric approach allows for the investigation of the kinetics of release and uptake of molecules in the brain. This chapter describes, completely, how to make these measurements and the properties of FSCV that make it uniquely suitable for performing chemical measurements of dopaminergic neurotransmission in vivo.

Key words

Fast scan cyclic voltammetry In vivo Electrochemistry Carbon fiber microelectrode 

Notes

Acknowledgments

This work was funded in part by grants from the National Institutes of Health, the National Science Foundation, and NCSU Department of Chemistry. In addition, we gratefully acknowledge our coworkers, past and present, for the studies cited in this review.

References

  1. 1.
    Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028PubMedCrossRefGoogle Scholar
  2. 2.
    Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203–210PubMedCrossRefGoogle Scholar
  3. 3.
    Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661PubMedCrossRefGoogle Scholar
  4. 4.
    Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  5. 5.
    Carelli RM, Wightman RM (2004) Functional microcircuitry in the accumbens underlying drug addiction: insights from real-time signaling during behavior. Curr Opin Neurobiol 14:763–768PubMedCrossRefGoogle Scholar
  6. 6.
    Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76PubMedCrossRefGoogle Scholar
  7. 7.
    Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742PubMedCrossRefGoogle Scholar
  8. 8.
    Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795PubMedCrossRefGoogle Scholar
  9. 9.
    Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618PubMedCrossRefGoogle Scholar
  10. 10.
    Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM (2008) Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci U S A 105:11957–11962PubMedCrossRefGoogle Scholar
  11. 11.
    Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271PubMedCrossRefGoogle Scholar
  12. 12.
    Cheer JF, Aragona BJ, Heien ML, Seipel AT, Carelli RM, Wightman RM (2007) Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 54:237–244PubMedCrossRefGoogle Scholar
  13. 13.
    Justice JB Jr (1993) Quantitative microdialysis of neurotransmitters. J Neurosci Methods 48:263–276PubMedCrossRefGoogle Scholar
  14. 14.
    Lu Y, Peters JL, Michael AC (1998) Direct comparison of the response of voltammetry and microdialysis to electrically evoked release of striatal dopamine. J Neurochem 70:584–593PubMedCrossRefGoogle Scholar
  15. 15.
    Michael AC, Borland LM (eds) (2007) Electrochemical methods for neuroscience, vol 1, 1st edn. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Heien ML, Johnson MA, Wightman RM (2004) Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 76:5697–5704PubMedCrossRefGoogle Scholar
  17. 17.
    Herr NR, Belle AM, Daniel KB, Carelli RM, Wightman RM (2010) Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chem Neurosci 1:627–638PubMedCrossRefGoogle Scholar
  18. 18.
    Kuhr WG, Wightman RM, Rebec GV (1987) Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle. Brain Res 418:122–128PubMedCrossRefGoogle Scholar
  19. 19.
    Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharmacol 109:341–348PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584PubMedCrossRefGoogle Scholar
  21. 21.
    Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trac-Trend Anal Chem 22:509–514CrossRefGoogle Scholar
  22. 22.
    Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62–69PubMedCrossRefGoogle Scholar
  23. 23.
    Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem 72:5994–6002PubMedCrossRefGoogle Scholar
  24. 24.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley, New YorkGoogle Scholar
  25. 25.
    Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523PubMedCrossRefGoogle Scholar
  26. 26.
    Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046–2054PubMedCrossRefGoogle Scholar
  27. 27.
    Venton BJ, Wightman RM (2007) Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat. Synapse 61:37–39PubMedCrossRefGoogle Scholar
  28. 28.
    Keithley RB, Heien ML, Wightman RM (2009) Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem 28:1127–1136CrossRefGoogle Scholar
  29. 29.
    Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neuroscience 39:1–16PubMedCrossRefGoogle Scholar
  30. 30.
    Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427PubMedCrossRefGoogle Scholar
  31. 31.
    Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69PubMedCrossRefGoogle Scholar
  32. 32.
    Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid? J Neurosci 25:5061–5065PubMedCrossRefGoogle Scholar
  33. 33.
    Ikemoto S, Qin M, Liu ZH (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 26:723–730PubMedCrossRefGoogle Scholar
  34. 34.
    Ikemoto S, Sharpe LG (2001) A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J Neurosci Methods 110:135–140PubMedCrossRefGoogle Scholar
  35. 35.
    Rebec GV, Bashore TR (1984) Critical issues in assessing the behavioral effects of amphetamine. Neurosci Biobehav Rev 8:153–159PubMedCrossRefGoogle Scholar
  36. 36.
    Herr NR, Kile BM, Carelli RM, Wightman RM (2008) Electroosmotic flow and its contribution to iontophoretic delivery. Anal Chem 80:8635–8641PubMedCrossRefGoogle Scholar
  37. 37.
    Garris PA, Ensman R, Poehlman J, Alexander A, Langley PE, Sandberg SG, Greco PG, Wightman RM, Rebec GV (2004) Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J Neurosci Methods 140:103–115PubMedCrossRefGoogle Scholar
  38. 38.
    Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM (2008) Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem 80:4040–4048PubMedCrossRefGoogle Scholar
  39. 39.
    Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS (2010) Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:1556–1563PubMedCrossRefGoogle Scholar
  40. 40.
    Zachek MK, Takmakov P, Moody B, Wightman RM, McCarty GS (2009) Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal Chem 81:6258–6265PubMedCrossRefGoogle Scholar
  41. 41.
    Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS (2010) Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 25:1179–1185PubMedCrossRefGoogle Scholar
  42. 42.
    Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PE (2010) Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7:126–129PubMedCrossRefGoogle Scholar
  43. 43.
    Garris PA (2010) Advancing neurochemical monitoring. Nat Methods 7:106–108PubMedCrossRefGoogle Scholar
  44. 44.
    Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • James G. Roberts
    • 1
  • Leyda Z. Lugo-Morales
    • 1
  • Philip L. Loziuk
    • 1
  • Leslie A. Sombers
    • 1
    Email author
  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations