Dopamine pp 229-242 | Cite as

Regulation of Dopamine Transporter Expression by Neuronal Activity

  • Shalini Padmanabhan
  • Thach Pham
  • Balakrishna M. PrasadEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 964)


Actions of extracellular dopamine released in the central nervous system are primarily terminated by the dopamine transporter. This protein is also a target for therapeutic and abused psychostimulant drugs. Different methods used to study dopamine transporter function, its expression, and intracellular signaling in neurons are described in this chapter. Function of the dopamine transporter in mesencephalic primary cultures can be measured by dopamine uptake assay. Expression of the transporter protein and mRNA are analyzed by western blots and quantitative RT-PCR, respectively. Finally, methods to study neuronal activity-dependent changes in Ca2+⁄calmodulin-dependent protein (CaM) kinase activity in dopamine neurons are described.

Key words

Mesencephalic Dopamine Uptake Transporter Western blot Quantitative RT-PCR Action potential Tyrosine hydroxylase CaM kinase MAP kinase 


  1. 1.
    Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 26:148–153PubMedCrossRefGoogle Scholar
  2. 2.
    Benoit-Marand M, Jaber M, Gonon F (2000) Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur J Neurosci 12:2985–2992PubMedCrossRefGoogle Scholar
  3. 3.
    Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278PubMedCrossRefGoogle Scholar
  4. 4.
    Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21(2):RC121, 1–5PubMedGoogle Scholar
  5. 5.
    Newberg A, Amsterdam J, Shults J (2007) Dopamine transporter density may be associated with the depressed affect in healthy subjects. Nucl Med Commun 28:3–6PubMedCrossRefGoogle Scholar
  6. 6.
    Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, Solanto MV, Logan J, Wong C, Ma Y, Swanson JM, Schulz K, Pradhan K (2007) Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 34:1182–1190PubMedCrossRefGoogle Scholar
  7. 7.
    Dresel S, Krause J, Krause KH, LaFougere C, Brinkbaumer K, Kung HF, Hahn K, Tatsch K (2000) Attention deficit hyperactivity disorder: binding of (99mTc)TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 27:1518–1524PubMedCrossRefGoogle Scholar
  8. 8.
    Feron FJ, Hendriksen JG, van Kroonenburgh MJ, Blom-Coenjaerts C, Kessels AG, Jolles J, Weber WE, Vles JS (2005) Dopamine transporter in attention-deficit hyperactivity disorder normalizes after cessation of methylphenidate. Pediatr Neurol 33:179–183PubMedCrossRefGoogle Scholar
  9. 9.
    Bezard E, Dovero S, Belin D, Duconger S, Jackson-Lewis V, Przedborski S, Piazza PV, Gross CE, Jaber M (2003) Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 23:10999–11007PubMedGoogle Scholar
  10. 10.
    Padmanabhan S, Lambert NA, Prasad BM (2008) Activity-dependent regulation of the dopamine transporter is mediated by CaM kinase signaling. Eur J Neurosci 28:2017–2027PubMedCrossRefGoogle Scholar
  11. 11.
    Padmanabhan S, Prasad BM (2009) Sustained depolarization decreases calcium/calmodulin-dependent protein kinase II activity and gene expression in dopamine neurons. Neuroscience 163:277–285PubMedCrossRefGoogle Scholar
  12. 12.
    Rayport S, Sulzer D, Shi WX, Sawasdikosol S, Monaco J, Batson D, Rajendran G (1992) Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology. J Neurosci 12:4264–4280PubMedGoogle Scholar
  13. 13.
    Prasad BM, Amara SG (2001) The dopamine transporter in mesencephalic cultures is refractory to physiological changes in membrane voltage. J Neurosci 21:7561–7567PubMedGoogle Scholar
  14. 14.
    Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD (2002) Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34:985–998PubMedCrossRefGoogle Scholar
  15. 15.
    Kelleher RJ III, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479PubMedCrossRefGoogle Scholar
  16. 16.
    Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266:5650–5657PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Shalini Padmanabhan
    • 1
  • Thach Pham
    • 2
  • Balakrishna M. Prasad
    • 1
    • 3
    Email author
  1. 1.Department of PharmacologyMedical College of GeorgiaAugustaUSA
  2. 2.General SurgeryDwight D. Eisenhower Army Medical CenterFort GordonUSA
  3. 3.Clinical InvestigationDwight D. Eisenhower Army Medical CenterFort GordonUSA

Personalised recommendations