Assessing Organismal Aging in the Filamentous Fungus Podospora anserina

  • Heinz D. OsiewaczEmail author
  • Andrea Hamann
  • Sandra Zintel
Part of the Methods in Molecular Biology book series (MIMB, volume 965)


Podospora anserina is an extensively studied model organism to unravel the mechanism of organismal aging. This filamentous fungus is short-lived and accessible to experimentation. Aging and lifespan are controlled by genetic and environmental traits and, in this model, have a strong mitochondrial etiology. Here, we describe methods and protocols to manipulate and study the aging process in P. anserina at different levels including biochemistry, cell biology, genetics, and physiology.

Key words

Aging Apoptosis Healthspan Lifespan Mitochondrial functions Podospora anserina 


  1. 1.
    Rizet G (1953) Impossibility of obtaining uninterrupted and unlimited multiplication of the ascomycete Podospora anserina. C R Hebd Seances Acad Sci 237:838–840PubMedGoogle Scholar
  2. 2.
    Rizet G (1953) Longevity of strains of Podospora anserina. C R Hebd Seances Acad Sci 237:1106–1109PubMedGoogle Scholar
  3. 3.
    Marcou D (1961) Notion de longevité et nature cytoplasmatique du determinant de senescence chez quelques champignons. Ann Sci Nat Bot 12:653–764Google Scholar
  4. 4.
    Esser K, Keller W (1976) Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet 144:107–110PubMedCrossRefGoogle Scholar
  5. 5.
    Kück U, Kappelhoff B, Esser K (1985) Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Curr Genet 10:59–67CrossRefGoogle Scholar
  6. 6.
    Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343PubMedCrossRefGoogle Scholar
  7. 7.
    Kück U, Esser K (1982) Genetic map of mitochondrial DNA in Podospora anserina. Curr Genet 5:143–147CrossRefGoogle Scholar
  8. 8.
    Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250PubMedCrossRefGoogle Scholar
  9. 9.
    Osiewacz H, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305CrossRefGoogle Scholar
  10. 10.
    Osiewacz HD (2002) Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 123:755–764PubMedCrossRefGoogle Scholar
  11. 11.
    Osiewacz HD, Hamann A (1997) DNA reorganization and biological aging. A review. Biochemistry (Mosc) 62:1275–1284Google Scholar
  12. 12.
    Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1:425–442PubMedCrossRefGoogle Scholar
  13. 13.
    Osiewacz HD, Brust D, Hamann A, Kunstmann B, Luce K, Müller-Ohldach M, Scheckhuber CQ, Servos J, Strobel I (2010) Mitochondrial pathways governing stress resistance, life, and death in the fungal aging model Podospora anserina. Ann N Y Acad Sci 1197:54–66PubMedCrossRefGoogle Scholar
  14. 14.
    Luce K, Weil AC, Osiewacz HD (2010) Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol 694:108–125PubMedCrossRefGoogle Scholar
  15. 15.
    Osiewacz HD (2011) Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina. Biochem Soc Trans 39:1488–1492PubMedCrossRefGoogle Scholar
  16. 16.
    Scheckhuber CQ, Osiewacz HD (2008) Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Gen Genet 280:365–374Google Scholar
  17. 17.
    Osiewacz HD, Hermanns J (1992) The role of mitochondrial DNA rearrangements in aging and human diseases. Aging (Milano) 4:273–286Google Scholar
  18. 18.
    Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 531–551Google Scholar
  19. 19.
    Esser K, Tudzynski P (1980) Senescence in fungi. In: Thimann KV (ed) Senescence in plants. CRC, Boca Raton, pp 67–83Google Scholar
  20. 20.
    Osiewacz HD, Scheckhuber CQ (2002) Senscence in Podospora anserina. In: Osiewacz HD (ed) Molecular biology of fungal development. Marcel Dekker, New York, pp 87–108CrossRefGoogle Scholar
  21. 21.
    Hamann A, Krause K, Werner A, Osiewacz HD (2005) A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr Genet 48:270–275PubMedCrossRefGoogle Scholar
  22. 22.
    El-Khoury R, Sellem CH, Coppin E, Boivin A, Maas MF, Debuchy R, Sainsard-Chanet A (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet 53:249–258PubMedCrossRefGoogle Scholar
  23. 23.
    Ridder R, Osiewacz HD (1992) Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Podospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet 21:207–213PubMedCrossRefGoogle Scholar
  24. 24.
    Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612PubMedGoogle Scholar
  25. 25.
    Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 3:200–211PubMedCrossRefGoogle Scholar
  26. 26.
    Osiewacz HD, Skaletz A, Esser K (1991) Integrative transformation of the ascomycete Podospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes. Appl Microbiol Biotechnol 35:38–45PubMedCrossRefGoogle Scholar
  27. 27.
    Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124PubMedCrossRefGoogle Scholar
  28. 28.
    Lecellier G, Silar P (1994) Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet 25:122–123PubMedCrossRefGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  30. 30.
    Gredilla R, Grief J, Osiewacz HD (2006) Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 41:439–447PubMedCrossRefGoogle Scholar
  31. 31.
    Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104PubMedCrossRefGoogle Scholar
  32. 32.
    Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Busincess Media, LLC 2013

Authors and Affiliations

  • Heinz D. Osiewacz
    • 1
    • 2
    Email author
  • Andrea Hamann
    • 1
    • 2
  • Sandra Zintel
    • 1
    • 2
  1. 1.Faculty of Biosciences, Institute of Molecular BiosciencesJohann Wolfgang Goethe University FrankfurtFrankfurtGermany
  2. 2.Frankfurt Cluster of Excellence “Macromolecular Complexes”FrankfurtGermany

Personalised recommendations