Detecting and Quantifying p53 Isoforms at mRNA Level in Cell Lines and Tissues

  • Marie P. Khoury
  • Virginie Marcel
  • Kenneth Fernandes
  • Alexandra Diot
  • David P. Lane
  • Jean-Christophe Bourdon
Part of the Methods in Molecular Biology book series (MIMB, volume 962)


The TP53 gene expresses at least nine different mRNA variants (p53 isoform mRNAs), including the one encoding the canonical p53 tumor suppressor protein. We have developed scientific tools to specifically detect and quantify p53 isoform expression at mRNA level by nested RT-PCR (reverse transcription-polymerase chain reaction) and quantitative real-time RT-PCR (RT-qPCR using the TaqMan® chemistry). Here, we describe these two methods, while highlighting essential points with regard to the analysis of p53 isoform mRNA expression.

Key words

p53 isoforms Cancer Detection Quantification mRNA Splicing Nested PCR Quantitative real-time RT-PCR (TaqMan® chemistry) p53 tumor suppressor protein 


  1. 1.
    Khoury MP, Bourdon J-C (2011) p53 isoforms: an intracellular microprocessor? Genes Cancer 2:453–465PubMedCrossRefGoogle Scholar
  2. 2.
    Bourdon J-C, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137PubMedCrossRefGoogle Scholar
  3. 3.
    Ghosh A, Stewart D, Matlashewski G (2004) Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24:7987PubMedCrossRefGoogle Scholar
  4. 4.
    Anensen N, Oyan AM, Bourdon JC, Kalland KH, Bruserud O, Gjertsen BT (2006) A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res 12:3985–3992PubMedCrossRefGoogle Scholar
  5. 5.
    Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K (2007) Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 43:617–623PubMedCrossRefGoogle Scholar
  6. 6.
    Avery-Kiejda KA, Zhang XD, Adams LJ, Scott RJ, Vojtesek B, Lane DP, Hersey P (2008) Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res 14:1659–1668PubMedCrossRefGoogle Scholar
  7. 7.
    Marabese M, Marchini S, Marrazzo E, Mariani P, Cattaneo D, Fossati R, Compagnoni A, Signorelli M, Moll UM, Codegoni AM et al (2008) Expression levels of p53 and p73 isoforms in stage I and stage III ovarian cancer. Eur J Cancer 44:131–141PubMedCrossRefGoogle Scholar
  8. 8.
    Song W, Huo SW, Lu JJ, Liu Z, Fang XL, Jin XB, Yuan MZ (2009) Expression of p53 ­isoforms in renal cell carcinoma. Chin Med J (Engl) 122:921–926Google Scholar
  9. 9.
    Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, Bowman ED, Mathe EA, Schetter AJ, Pine SR, Ji H, Vojtesek B, Bourdon J-C, Lane DP, Harris CC (2009) p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11:1135–1142PubMedCrossRefGoogle Scholar
  10. 10.
    Khoury MP, Bourdon J-C (2010) The isoforms of the p53 protein. Cold Spring Harb Perspect Biol 2:a000927PubMedCrossRefGoogle Scholar
  11. 11.
    Marcel V, Vijayakumar V, Fernandez-Cuesta L, Hafsi H, Sagne C, Hautefeuille A, Olivier M, Hainaut P (2010) p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29:2691–2700PubMedCrossRefGoogle Scholar
  12. 12.
    Aoubala M, Murray-Zmijewski F, Khoury MP, Fernandes K, Perrier S, Bernard H, Prats AC, Lane DP, Bourdon J-C (2010) p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death Differ 18:248–258PubMedCrossRefGoogle Scholar
  13. 13.
    Khoury MP, Bourdon J-C, Diot A, Baker L, Fernandes K, Aoubala M, Quinlan P, Purdie CA, Jordan LB, Prats AC, Lane DP, Thompson AM (2011) p53 mutant breast cancer patients expressing p53γ have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 13(1):R7PubMedCrossRefGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marie P. Khoury
    • 1
  • Virginie Marcel
    • 1
  • Kenneth Fernandes
    • 1
  • Alexandra Diot
    • 1
  • David P. Lane
    • 1
  • Jean-Christophe Bourdon
    • 2
  1. 1.CR-UK Cell Transformation Research Group, Centre for Oncology and Molecular Medicine, Ninewells HospitalUniversity of DundeeDundeeUK
  2. 2.Department of Surgery and Molecular Oncology, Ninewells HospitalUniversity of DundeeDundeeUK

Personalised recommendations