Skip to main content

Improving Motor Activation Patterns After Stroke with Wii-based Movement Therapy

  • Protocol
  • First Online:
Stimulation and Inhibition of Neurons

Part of the book series: Neuromethods ((NM,volume 78))

Abstract

Stroke is one of the leading causes of acquired motor disability worldwide. With no cure, the only way to recover motor function is through rehabilitation. Recent trials of Wii-based movement therapy have demonstrated improved functional ability that has transferred to greater independence in activities of daily living. This brief but intense 2-week programme can be tailored to the deficits of individual patients to promote motor recovery. More recent studies have investigated changes in electromyography and joint movement during Wii-based movement therapy. Results from a heterogeneous group of stroke patients suggest that improved movement ability and motor control are promoted by functionally relevant changes in patterns of muscle activation and joint movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yach D, Hawkes C, Gould CL, Hofman KJ (2004) The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291(21):2616–2622

    Article  PubMed  CAS  Google Scholar 

  2. Senes S (2006) How we manage stroke in Australia. Canberra AIHW.

    Google Scholar 

  3. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(Pt 3):809–819

    Article  PubMed  Google Scholar 

  4. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218

    Article  PubMed  CAS  Google Scholar 

  5. Hara Y, Akaboshi K, Masakado Y, Chino N (2000) Physiologic decrease of single thenar motor units in the F-response in stroke patients. Arch Phys Med Rehabil 81(4):418–423

    Article  PubMed  CAS  Google Scholar 

  6. Hara Y, Masakado Y, Chino N (2004) The physiological functional loss of single thenar motor units in the stroke patients: when does it occur? Does it progress? Clin Neurophysiol 115(1):97–103

    Article  PubMed  Google Scholar 

  7. Lukacs M (2005) Electrophysiological signs of changes in motor units after ischaemic stroke. Clin Neurophysiol 116(7):1566–1570

    Article  PubMed  Google Scholar 

  8. Rosenfalck A, Andreassen S (1980) Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J Neurol Neurosurg Psychiatry 43(10):907–916

    Article  PubMed  CAS  Google Scholar 

  9. Tang A, Rymer WZ (1981) Abnormal force—EMG relations in paretic limbs of hemiparetic human subjects. J Neurol Neurosurg Psychiatry 44(8):690–698

    Article  PubMed  CAS  Google Scholar 

  10. Gemperline JJ, Allen S, Walk D, Rymer WZ (1995) Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 18(10):1101–1114

    Article  PubMed  CAS  Google Scholar 

  11. Levin MF, Selles RW, Verheul MH, Meijer OG (2000) Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control. Brain Res 853(2):352–369

    Article  PubMed  CAS  Google Scholar 

  12. Neckel N, Pelliccio M, Nichols D, Hidler J (2006) Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. J Neuroeng Rehabil 3:17

    Article  PubMed  Google Scholar 

  13. Scelsi R, Lotta S, Lommi G, Poggi P, Marchetti C (1984) Hemiplegic atrophy. Morphological findings in the anterior tibial muscle of patients with cerebral vascular accidents. Acta Neuropathol 62(4):324–331

    Article  PubMed  CAS  Google Scholar 

  14. Slager UT, Hsu JD, Jordan C (1985) Histochemical and Morphometric Changes in Muscles of Stroke Patients. Clin Orthop Relat Res 199:159–168

    PubMed  Google Scholar 

  15. Dattola R, Girlanda P, Vita G, Santoro M, Roberto ML, Toscano A, Venuto C, Baradello A, Messina C (1993) Muscle rearrangement in patients with hemiparesis after stroke: an electrophysiological and morphological study. Eur Neurol 33(2):109–114

    Article  PubMed  CAS  Google Scholar 

  16. Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB (1994) Similar motor recovery of upper and lower extremities after stroke. Stroke 25(6):1181–1188

    Article  PubMed  CAS  Google Scholar 

  17. Desrosiers J, Malouin F, Richards C, Bourbonnais D, Rochette A, Bravo G (2003) Comparison of changes in upper and lower extremity impairments and disabilities after stroke. Int J Rehabil Res 26(2):109–116

    Article  PubMed  Google Scholar 

  18. Kalra L, Dale P, Crome P (1993) Improving stroke rehabilitation. A controlled study. Stroke 24(10):1462–1467

    Article  PubMed  CAS  Google Scholar 

  19. Feys HM, De Weerdt WJ, Selz BE, Cox Steck GA, Spichiger R, Vereeck LE, Putman KD, Van Hoydonck GA (1998) Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke 29(4):785–792

    Article  PubMed  CAS  Google Scholar 

  20. Twitchell TE (1951) The restoration of motor function following hemiplegia in man. Brain 74(4):443–480

    Article  PubMed  CAS  Google Scholar 

  21. Beebe JA, Lang CE (2009) Active range of motion predicts upper extremity function 3 months after stroke. Stroke 40(5):1772–1779

    Article  PubMed  Google Scholar 

  22. Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112(Pt 3):749–763

    Article  PubMed  Google Scholar 

  23. Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurones in humans. J Physiol 448:397–412

    PubMed  CAS  Google Scholar 

  24. Turton A, Lemon RN (1999) The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients. Exp Brain Res 129(4):559–572

    Article  PubMed  CAS  Google Scholar 

  25. Taub E (1980) Somatosensory deafferentation research with monkeys: implications for rehabilitation medicine. Behav Psychol Rehabil 30:1303–1313

    Google Scholar 

  26. Taub E, Uswatte G, Mark VW, Morris DM (2006) The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys 42(3):241–256

    PubMed  CAS  Google Scholar 

  27. Brodal A (1973) Self-observations and neuro-anatomical considerations after a stroke. Brain 96(4):675–694

    Article  PubMed  CAS  Google Scholar 

  28. Nyberg-Hansen R (1963) Some comments on the pyramidal tract, with special reference to its individual variation in man. Acta Neurol Scand 39:1–30

    Article  Google Scholar 

  29. Hwang IS, Abraham LD (2001) Quantitative EMG analysis to investigate synergistic coactivation of ankle and knee muscles during isokinetic ankle movement. Part 1: time amplitude analysis. J Electromyogr Kinesiol 11(5):319–325

    Article  PubMed  CAS  Google Scholar 

  30. Mouawad MR, Doust CG, Max MD, McNulty PA (2011) Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. J Rehabil Med 43(6):527–533

    Article  PubMed  Google Scholar 

  31. Mark VW, Taub E (2004) Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor Neurol Neurosci 22(3–5):317–336

    PubMed  Google Scholar 

  32. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296(17):2095–2104

    Article  PubMed  CAS  Google Scholar 

  33. Page SJ, Levine P, Sisto S, Bond Q, Johnston MV (2002) Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin Rehabil 16(1):55–60

    Article  PubMed  Google Scholar 

  34. Sterr A, Szameitat A, Shen S, Freivogel S (2006) Application of the CIT concept in the clinical environment: hurdles, practicalities, and clinical benefits. Cogn Behav Neurol 19(1):48–54

    Article  PubMed  Google Scholar 

  35. Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, Teasell R (2010) Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke 5(1):47–51

    Article  PubMed  CAS  Google Scholar 

  36. Yong Joo L, Soon Yin T, Xu D, Thia E, Pei Fen C, Kuah CW, Kong KH (2010) A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 42(5):437–441

    Article  PubMed  Google Scholar 

  37. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  38. Taub E, Uswatt G (2006) Constraint-Induced Movement therapy: answers and questions after two decades of research. NeuroRehabilitation 21(2):93–95

    PubMed  Google Scholar 

  39. Gauthier LV, Taub E (2009) CI therapy: a method for harnessing neuroplastic changes to improve rehabilitation after damage to the brain. In: Schmorrow DD, Estabrooke IV, Grootjen M (eds) Foundations of augmented cognition neuroergonomics and operational neuroscience. Springer, Berlin, pp 792–799

    Chapter  Google Scholar 

  40. Mirka GA (1991) The quantification of EMG normalization error. Ergonomics 34(3):343–352

    Article  PubMed  CAS  Google Scholar 

  41. Oberg T (1995) Muscle fatigue and calibration of EMG measurements. J Electromyogr Kinesiol 5(4):239–243

    Article  PubMed  CAS  Google Scholar 

  42. Toffola ED, Sparpaglione D, Pistorio A, Buonocore M (2001) Myoelectric manifestations of muscle changes in stroke patients. Arch Phys Med Rehabil 82(5):661–665

    Article  PubMed  CAS  Google Scholar 

  43. Shaw JBJ, Deuvorst N, Macfie C, Brouwer B (1999) Clinical and physiological measures of tone in chronic stroke. J Neurol Phys Ther 23:19–24

    Google Scholar 

  44. English C, McLennan H, Thoirs K, Coates A, Bernhardt J (2010) Loss of skeletal muscle mass after stroke: a systematic review. Int J Stroke 5(5):395–402

    Article  PubMed  Google Scholar 

  45. Mottram CJ, Suresh NL, Heckman CJ, Gorassini MA, Rymer WZ (2009) Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J Neurophysiol 102(4):2026–2038

    Article  PubMed  Google Scholar 

  46. Mottram CJ, Wallace CL, Chikando CN, Rymer WZ (2010) Origins of spontaneous firing of motor units in the spastic-paretic biceps brachii muscle of stroke survivors. J Neurophysiol 104(6):3168–3179

    Article  PubMed  CAS  Google Scholar 

  47. Butefisch CM (2004) Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke. Neuroscientist 10(2):163–173

    Article  PubMed  Google Scholar 

  48. Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125(Pt 12):2731–2742

    Article  PubMed  Google Scholar 

  49. Liepert J, Hamzei F, Weiller C (2004) Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci 22(3–5):269–277

    PubMed  CAS  Google Scholar 

  50. Nelles G (2004) Cortical reorganization—effects of intensive therapy. Restor Neurol Neurosci 22(3–5):239–244

    PubMed  Google Scholar 

  51. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126(Pt 6):1430–1448

    Article  PubMed  CAS  Google Scholar 

  52. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(Pt 11):2476–2496

    Article  PubMed  CAS  Google Scholar 

  53. Kim YH, Park JW, Ko MH, Jang SH, Lee PK (2004) Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med J 45(2):241–246

    PubMed  Google Scholar 

  54. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31

    PubMed  CAS  Google Scholar 

  55. Di Fabio RP, Badke MB, Duncan PW (1986) Adapting human postural reflexes following localized cerebrovascular lesion: analysis of bilateral long latency responses. Brain Res 363(2):257–264

    Article  PubMed  Google Scholar 

  56. Archambault P, Pigeon P, Feldman AG, Levin MF (1999) Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects. Exp Brain Res 126(1):55–67

    Article  PubMed  CAS  Google Scholar 

  57. Levin MF (1996) Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119(Pt 1):281–293

    Article  PubMed  Google Scholar 

  58. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  PubMed  CAS  Google Scholar 

  59. Van Vliet PM, Kerwin D, Sheridan M, Fentem P (1995) The influence of functional goals on the kinematics of reaching following stroke. J Neurol Phys Ther 19:11–16

    Google Scholar 

  60. Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL (2005) The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair 19(3):194–205

    Article  PubMed  Google Scholar 

  61. Taub E, Miller NE, Novack TA, Cook EW, Fleming WC, Nepomuceno CS, Connell JS, Crago JE (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehab 74(4):347–354

    CAS  Google Scholar 

  62. Uswatte G, Taub E, Morris D, Vignolo M, McCulloch K (2005) Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke 36(11):2493–2496

    Article  PubMed  Google Scholar 

  63. Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104(2):125–132

    Article  PubMed  CAS  Google Scholar 

  64. Gladstone DJ, Danells CJ, Black SE (2002) The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16(3):232–240

    Article  PubMed  Google Scholar 

  65. Uswatte G, Taub E, Morris D, Light K, Thompson PA (2006) The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 67(7):1189–1194

    Article  PubMed  CAS  Google Scholar 

  66. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A (2006) A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37(4):1045–1049

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia and the NSW Office of Science and Medical Research (Spinal Injury and other Neurological Diseases Research Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope A. McNulty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thompson-Butel, A.G., Scheuer, S.E., McNulty, P.A. (2013). Improving Motor Activation Patterns After Stroke with Wii-based Movement Therapy. In: Pilowsky, P., Farnham, M., Fong, A. (eds) Stimulation and Inhibition of Neurons. Neuromethods, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-233-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-233-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-232-2

  • Online ISBN: 978-1-62703-233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics