Advertisement

Longistatin, an EF-Hand Ca2+-Binding Protein from Vector Tick: Identification, Purification, and Characterization

  • Anisuzzaman
  • M. Khyrul Islam
  • M. Abdul Alim
  • Naotoshi TsujiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 963)

Abstract

EF-hand Ca2+-binding motif, a structural component of the EF-hand protein, functions as a calcium sensor and/or buffer in the cytosol of the cell. However, in a few exceptional cases, the EF-hand proteins are secreted from cells and play crucial roles extracellularly. We have identified longistatin, an EF-hand Ca2+-binding protein, from the salivary glands of the tick, Haemaphysalis longicornis. Longistatin possesses an N-terminal sequence of unknown structure and two EF-hand motifs in the C-terminus, which conserve a calmodulin-like canonical structure. Longistatin shows distinct changes in its migration during electrophoresis through SDS-PAGE gel containing calcium or ethylenediaminetetraacetic acid (EDTA). Both recombinant and endogenous forms of longistatin can be stained with rutheninum red, demonstrating that longistatin is a Ca2+-binding protein.

Key words

Ticks Haemaphysalis longicornis Longistatin EF-hand motif Ca2+-binding protein 

References

  1. 1.
    Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326PubMedGoogle Scholar
  2. 2.
    Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525PubMedCrossRefGoogle Scholar
  3. 3.
    Anisuzzaman, Islam MK, Miyoshi T, Alim MA, Hatta T, Yamaji K, Matsumoto Y, Fujisaki K, Tsuji N (2010) Longistatin, a novel EF-hand protein from the ixodid tick Haemaphysalis longicornis, is required for acquisition of host blood-meals. Int J Parasitol 40:721–729PubMedCrossRefGoogle Scholar
  4. 4.
    Chazin WJ (2011) Relating form and function of EF-hand calcium binding proteins. Acc Chem Res 44:171–179PubMedCrossRefGoogle Scholar
  5. 5.
    Choi KC, Jeung EB (2008) Molecular mechanism of regulation of the calcium-binding protein calbindin-D9k, and its physiological role(s) in mammals: a review of current research. J Cell Mol Med 2:409–420CrossRefGoogle Scholar
  6. 6.
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122PubMedCrossRefGoogle Scholar
  7. 7.
    Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci S3(3):1232–1262CrossRefGoogle Scholar
  8. 8.
    Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J (1996) Structure of a novel extracellular Ca2+-binding module in BM-40. Nat Struct Biol 3:67–73PubMedCrossRefGoogle Scholar
  9. 9.
    Blanchard H, Grochulski P, Li Y, Arthur JS, Davies PL, Elce JS, Cygler M (1997) Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nat Struct Biol 4:532–538PubMedCrossRefGoogle Scholar
  10. 10.
    Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, Jin L, Yuen PW, Takano E, Hatanaka M, DeLucas LJ, Narayana SV (1997) Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol 4:539–547PubMedCrossRefGoogle Scholar
  11. 11.
    Jia J, Han Q, Borregaard N, Lollike K, Cygler M (2000) Crystal structure of human grancalcin, a member of the penta-EF-hand protein family. J Mol Biol 300:1271–1281PubMedCrossRefGoogle Scholar
  12. 12.
    Jia J, Tarabykina S, Hansen C, Berchtold M, Cygler M (2001) Structure of apoptosis-linked protein ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins. Structure 9:267–275PubMedCrossRefGoogle Scholar
  13. 13.
    Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16:185–200PubMedCrossRefGoogle Scholar
  14. 14.
    Evenäs J, Malmendal A, Forsén S (1998) Calcium. Curr Opin Chem Biol 2:293–302PubMedCrossRefGoogle Scholar
  15. 15.
    Schaub MC, Heizmann CW (2008) Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 369:247–264PubMedCrossRefGoogle Scholar
  16. 16.
    Grabarek Z (2011) Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Biochim Biophys Acta 1813:913–921PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng C, Liu HH, Zhou J, Zhang B (2010) EF-hand domains of MCFD2 mediate interactions with both LMAN1 and coagulation factor V or VIII. Blood 115:1081–1087PubMedCrossRefGoogle Scholar
  18. 18.
    Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  19. 19.
    Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736PubMedCrossRefGoogle Scholar
  20. 20.
    Barger-Lux MJ, Heaney RP (1994) The role of calcium intake in preventing bone fragility, hypertension, and certain cancers. J Nutr 124:1406S–1411SPubMedGoogle Scholar
  21. 21.
    Belizán JM, Villar J, Repke J (1988) The relationship between calcium intake and pregnancy-induced hypertension: up-to-date evidence. Am J Obstet Gynecol 158:898–902PubMedGoogle Scholar
  22. 22.
    Völkers M, Rohde D, Goodman C, Most P (2010) S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010:178614. doi: 10.1155/2010/178614 PubMedCrossRefGoogle Scholar
  23. 23.
    Desjardins JF, Teichert-Kuliszewska K, Parker T (2010) S100A1: a pluripotent regulator of cardiac and vascular function. Can J Cardiol Suppl A:9A–12ACrossRefGoogle Scholar
  24. 24.
    Weiss JL, Hui H, Burgoyne RD (2010) Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30:1283–1292PubMedCrossRefGoogle Scholar
  25. 25.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590PubMedCrossRefGoogle Scholar
  26. 26.
    Rohde D, Brinks H, Ritterhoff J, Qui G, Ren S, Most P (2011) S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 50:777–784PubMedCrossRefGoogle Scholar
  27. 27.
    Stengel A, Goebel M, Taché Y (2011) Nesfatin-1: a novel inhibitory regulator of food intake and body weight. Obes Rev 12:261–271PubMedCrossRefGoogle Scholar
  28. 28.
    Lewit-Bentley A, Réty S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643PubMedCrossRefGoogle Scholar
  29. 29.
    Tsigelny I, Shindyalov IN, Bourne PE, Südhof TC, Taylor P (2000) Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Sci 9:180–185PubMedCrossRefGoogle Scholar
  30. 30.
    Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death, vol 41, 1st edn. Elsevier, UK, pp 51–93CrossRefGoogle Scholar
  31. 31.
    Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci USA 103:1159–1164PubMedCrossRefGoogle Scholar
  32. 32.
    Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176:528–535PubMedCrossRefGoogle Scholar
  33. 33.
    Wolf S, Haase-Kohn C, Pietzsch J (2010) S100A2 in cancerogenesis: a friend or a foe? Amino Acids 41:849–861. doi: 10.1007/s00726-010-0623-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Pottgiesser J, Maurer P, Mayer U, Nitsch R, Mann K, Timpl R, Krieg T, Engel J (1994) Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J Mol Biol 238:563–574PubMedCrossRefGoogle Scholar
  35. 35.
    Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286:7214–7226PubMedCrossRefGoogle Scholar
  36. 36.
    Nagamune K, Moreno SN, Chini EN, Sibley LD (2008) Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem 47:70–81PubMedCrossRefGoogle Scholar
  37. 37.
    DeFalco TA, Bender KW, Snedden WA (2009) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40PubMedCrossRefGoogle Scholar
  38. 38.
    Orans J, Johnson MD, Coggan KA, Sperlazza JR, Heiniger RW, Wolfgang MC, Redinbo MR (2010) Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Proc Natl Acad Sci USA 107: 1065–1070PubMedCrossRefGoogle Scholar
  39. 39.
    Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, New YorkGoogle Scholar
  40. 40.
    Fujisaki K, Kawazu S, Kamio T (1994) The taxonomy of the bovine Theileria spp. Parasitol Today 10:31–33PubMedCrossRefGoogle Scholar
  41. 41.
    Hoogstraal H, Roberts FH, Kohls GM, Tipton VJ (1968) Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and northeastern China and USSR, and its parthogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol 54:1197–1213PubMedCrossRefGoogle Scholar
  42. 42.
    Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K (2008) A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog 4:e1000062PubMedCrossRefGoogle Scholar
  43. 43.
    Ho T, Htwe KK, Yamasaki N, Zhang GQ, Ogawa M, Yamaguchi T, Fukushi H, Hirai K (1995) Isolation of Coxiella burnetii from dairy cattle and tick, and some characteristics of isolates in Japan. Microbiol Immunol 39:663–671PubMedGoogle Scholar
  44. 44.
    Anisuzzaman, Islam MK, Miyoshi T, Alim MA, Hatta T, Yamaji K, Matsumoto Y, Fujisaki K, Tsuji N (2010) Longistatin, a plasminogen activator, is key to the availability of blood-meals for ixodid ticks. PLoS Pathog 7:e1001312CrossRefGoogle Scholar
  45. 45.
    Charuk JH, Pirraglia CA, Reithmeier RA (1990) Interaction of ruthenium red with Ca2+-binding proteins. Anal Biochem 188:123–131PubMedCrossRefGoogle Scholar
  46. 46.
    Maruyama K, Nonomura Y (1984) High molecular weight calcium binding protein in the microsome of scallop striated muscle. J Biochem 96:859–870PubMedGoogle Scholar
  47. 47.
    Schibeci A, Martonosi A (1980) Detection of Ca2+-binding proteins on polyacrylamide gels by 45Ca autoradiography. Anal Biochem 104:335–342PubMedCrossRefGoogle Scholar
  48. 48.
    Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 76:6270–6273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anisuzzaman
    • 1
  • M. Khyrul Islam
    • 2
  • M. Abdul Alim
    • 2
  • Naotoshi Tsuji
    • 1
    Email author
  1. 1.Department of Global Agricultural Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.National Institute of Animal Health, National Agricultural and Food Research OrganizationIbarakiJapan

Personalised recommendations