Advertisement

New Aspects of Calmodulin–Calmodulin Binding Domains Recognition

  • Emilie Audran
  • Rania Dagher
  • Sophie Gioria
  • Marie-Claude Kilhoffer
  • Jacques HaiechEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 963)

Abstract

Understanding the role of calmodulin (CaM) in calcium signal transduction implies to describe the ­calcium-dependent molecular mechanism of interaction of CaM with the various CaM-binding domains (CBD). In order to fulfill this aim, we have developed a new strategy and the afferent techniques to quantify the interaction of CaM with any CBD as a function of calcium concentration. Excel software has been used to deconvolute the experimental data and to obtain the macroscopic constants characterizing the system. We are illustrating our approach on six different CaM/CBD. This strategy may be used to analyze the interaction between any calcium-binding protein and its targets.

Key words

Calcium CaM CaM-binding domain Calcium-dependent interaction Anisotropy EF-hand 

Notes

Acknowledgments

This work has been supported by grant from ANR CAPHE and by CNRS and University of Strasbourg (France). This work has been performed at the technological platform PCBIS (UMS CNRS 3286). S. G is member of this platform.

References

  1. 1.
    Haiech J, Moreau M (2011) The calcium signal: a universal carrier to code, decode and transduce information. Biochimie 93:vPubMedCrossRefGoogle Scholar
  2. 2.
    Berridge MJ (2004) Calcium signal transduction and cellular control mechanisms. Biochim Biophys Acta 1742:3–7PubMedCrossRefGoogle Scholar
  3. 3.
    Haiech J, Audran E, Feve M, Ranjeva R, Kilhoffer MC (2011) Revisiting intracellular calcium signaling semantics. Biochimie 93:2029–2037PubMedCrossRefGoogle Scholar
  4. 4.
    Haiech J, Klee C, Demaille J (1981) Effects of cations on affinity of calmodulin for calcium-ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry 20:3890–3894PubMedCrossRefGoogle Scholar
  5. 5.
    Brostrom CO, Huang YC, Breckenridge BM, Wolff DJ (1975) Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc Natl Acad Sci U S A 72:64–68PubMedCrossRefGoogle Scholar
  6. 6.
    Gopinath RM, Vincenzi FF (1977) Phospho-diesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun 77:1203–1209PubMedCrossRefGoogle Scholar
  7. 7.
    Jarrett HW, Penniston JT (1977) Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3′:5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77:1210–1216PubMedCrossRefGoogle Scholar
  8. 8.
    Yazawa M, Yagi K (1977) Calcium-binding subunit of myosin light chain kinase. J Biochem 82:287–289PubMedGoogle Scholar
  9. 9.
    Cohen P, Burchell A, Foulkes JG, Cohen PT (1978) Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett 92:287–293PubMedCrossRefGoogle Scholar
  10. 10.
    Klee CB, Haiech J (1980) Concerted role of calmodulin and calcineurin in calcium regulation. Ann N Y Acad Sci 356:43–54PubMedCrossRefGoogle Scholar
  11. 11.
    Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255:962–975PubMedGoogle Scholar
  12. 12.
    Cook WJ, Dedman JR, Means AR, Bugg CE (1980) Crystallization and preliminary X-ray investigation of calmodulin. J Biol Chem 255:8152–8153PubMedGoogle Scholar
  13. 13.
    Kretsinger RH (1980) Crystallographic studies of calmodulin and homologs. Ann N Y Acad Sci 356:14–19PubMedCrossRefGoogle Scholar
  14. 14.
    Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742PubMedCrossRefGoogle Scholar
  15. 15.
    Craig TA, Watterson DM, Prendergast FG, Haiech J, Roberts DM (1987) Site-specific mutagenesis of the alpha-helices of calmodulin – effects of altering a charge cluster in the helix that links the 2 halves of calmodulin. J Biol Chem 262:3278–3284PubMedGoogle Scholar
  16. 16.
    Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116PubMedCrossRefGoogle Scholar
  17. 17.
    Chin D, Means AR (2000) Calmodulin: a ­prototypical calcium sensor. Trends Cell Biol 10: 322–328PubMedCrossRefGoogle Scholar
  18. 18.
    Dagher R, Pigault C, Bonnet D, Boeglin D, Pourbaix C, Kilhoffer M, Villa P, Wermuth C, Hibert M, Haiech J (2006) Use of a fluorescent polarization based high throughput assay to identify new calmodulin ligands. Biochim Biophys Acta 1763:1250–1255PubMedCrossRefGoogle Scholar
  19. 19.
    Dagher R, Peng S, Gioria S, Feve M, Zeniou M, Zimmermann M, Pigault C, Haiech J, Kilhoffer MC (2011) A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains ­interact with different calmodulin-calcium complexes. Biochim Biophys Acta 1813:1059–1067PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emilie Audran
    • 1
  • Rania Dagher
    • 2
  • Sophie Gioria
    • 3
  • Marie-Claude Kilhoffer
    • 4
  • Jacques Haiech
    • 5
    Email author
  1. 1.Faculté de Pharmacie, Laboratoire d’Innovation Thérapeutique, URM 7200Université de StrasbourgF-IllkirchFrance
  2. 2.Physiopathologie et Epidémiologie de l’Insuffisance Respiratoire, Faculté de Médicine, Inserm U700Université Paris Diderot-Paris 7ParisFrance
  3. 3.PCBIS, UMS 3286Bd Sébastien BrandIllkirchFrance
  4. 4.Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, URM 7200Université de StrasbourgIllkirchFrance
  5. 5.Laboratoire d’Innovation Thèrapeutique, Facultè de Pharmacie, URM 7200Université de StrasbourgIllkirchFrance

Personalised recommendations