Divers Models of Divalent Cation Interaction to Calcium-Binding Proteins: Techniques and Anthology

  • Jos A. CoxEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 963)


Intracellular Ca2+-binding proteins (CaBPs) are sensors of the calcium signal and several of them even shape the signal. Most of them are equipped with at least two EF-hand motifs designed to bind Ca2+. Their affinities are very variable, can display cooperative effects, and can be modulated by physiological Mg2+ concentrations. These binding phenomena are monitored by four major techniques: equilibrium dialysis, fluorimetry with fluorescent Ca2+ indicators, flow dialysis, and isothermal titration calorimetry. In the last quarter of the twentieth century reports on the ion-binding characteristics of several abundant wild-type CaBPs were published. With the advent of recombinant CaBPs it became possible to determine these properties on previously inaccessible proteins. Here I report on studies by our group carried out in the last decade on eight families of recombinant CaBPs, their mutants, or truncated domains. Moreover this chapter deals with the currently used methods for quantifying the binding of Ca2+ and Mg2+ to CaBPs.

Key words

Equilibrium dialysis Fluorescent Ca2+ indicators Flow dialysis Isothermal titration calorimetry Penta-EF-hand proteins S100 proteins Invertebrate-specific CaBPs Centrins NOX5 


  1. 1.
    Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87PubMedCrossRefGoogle Scholar
  2. 2.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular calcium: molecular determinants and functional consequences. Physiol Rev 86:369–408PubMedCrossRefGoogle Scholar
  3. 3.
    Wnuk W, Cox JA, Stein EA (1982) Parvalbumins and other soluble sarcoplasmic Ca-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol II. Academic, New York, pp 243–278Google Scholar
  4. 4.
    Milos M, Schaer J-J, Comte M, Cox JA (1986) Calcium-proton and calcium-magnesium antagonism in calmodulin. Biochemistry 25:6279–6287PubMedCrossRefGoogle Scholar
  5. 5.
    Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multifunctional Ca2+-, Zn2+- and Cu2+-binding protein family. Biometals 11:383–397PubMedCrossRefGoogle Scholar
  6. 6.
    Mamar-Bachi A, Cox JA (1987) Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase. Cell Calcium 8: 473–482PubMedCrossRefGoogle Scholar
  7. 7.
    Cox JA (1988) Interactive properties of calmodulin. Biochem J 249:621–629PubMedGoogle Scholar
  8. 8.
    Cox JA (1996) Techniques for measuring the binding of Ca2+ and Mg2+ to calcium-binding proteins. In: Celio MR, Pauls T, Schwaller B (eds) Guidebook to the calcium-binding proteins. Oxford University Press, Oxford, pp 1–12Google Scholar
  9. 9.
    Vito P, Lacana E, D’Adamio L (1996) Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimers’ disease gene. Science 271:521–525PubMedCrossRefGoogle Scholar
  10. 10.
    Tarabykina S et al (2000) Two forms of the apoptosis-linked protein ALG-2 with different Ca2+ affinities and target recognition. J Biol Chem 275:10514–10518PubMedCrossRefGoogle Scholar
  11. 11.
    Jia J et al (2001) Structure of apoptosis-linked gene product ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins. Structure 9:267–275PubMedCrossRefGoogle Scholar
  12. 12.
    Subramanian L et al (2004) Ca2+ binding to EF-hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma. Biochemistry 43:11175–11186PubMedCrossRefGoogle Scholar
  13. 13.
    Lollike K et al (2001) Biochemical characterization of the penta-EF-hand protein grancalcin and identification of L-plastin as a binding ­partner. J Biol Chem 276:17762–17769PubMedCrossRefGoogle Scholar
  14. 14.
    Jia J et al (2000) Crystal structure of human grancalcin, a member of the penta-EF-hand protein family. J Mol Biol 300:1271–1281PubMedCrossRefGoogle Scholar
  15. 15.
    Méhul B, Bernard D, Simonetti L, Bernard MA, Schmidt R (2000) Identification and cloning of a new calmodulin-like protein from human epidermis. J Biol Chem 275:12841–12847PubMedCrossRefGoogle Scholar
  16. 16.
    Durussel I et al (2001) Cation- and peptide-binding properties of human calmodulin-like skin protein. Biochemistry 41:5439–5448CrossRefGoogle Scholar
  17. 17.
    Schwaller B, Celio MR, Hunziker W (1995) Alternative splicing of calretinin mRNA leads to different forms of calretinin. Eur J Biochem 230:424–430PubMedCrossRefGoogle Scholar
  18. 18.
    Schwaller B et al (1997) Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 272:29663–29671PubMedCrossRefGoogle Scholar
  19. 19.
    Leclerc E, Heizmann CW (2011) The importance of the Ca2+/Zn2+ signaling proteins and RAGE in translational medicine. Front Biosci (Schol Ed) S3:1232–1262CrossRefGoogle Scholar
  20. 20.
    Schäfer BW et al (2000) Brain S100A5 is a novel calcium-, zinc-, and copper-binding protein of the EF-hand superfamily. J Biol Chem 275:30623–30630PubMedCrossRefGoogle Scholar
  21. 21.
    Ridinger K et al (2000) S100A3 Biochemical characterisation and subcellular localization in different cell lines. J Biol Chem 275:8686–8694PubMedCrossRefGoogle Scholar
  22. 22.
    Hsieh H-L, Schäfer BW, Cox JA, Heizmann CW (2002) S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells. J Cell Sci 115:3249–3258Google Scholar
  23. 23.
    Sturchler E et al (2006) S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem 281:38905–38917PubMedCrossRefGoogle Scholar
  24. 24.
    Hermann A, Cox JA (1995) Sarcoplasmic calcium-binding proteins. Comp Biochem Physiol 111B:337–345Google Scholar
  25. 25.
    Tossavainen H et al (2003) NMR solution structure of calerythrin, an EF-hand calcium-binding protein of Saccharopolyspora erythraea. Eur J Biochem 270:2505–2512PubMedCrossRefGoogle Scholar
  26. 26.
    Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the ­photoprotein aequorin at 2.3 Å resolution. Nature 405:372–376PubMedCrossRefGoogle Scholar
  27. 27.
    Gombos Z et al (2001) Calexcitin B is a new member of the sarcoplasmic calcium-binding protein family. J Biol Chem 276:22529–22536PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson TJ et al (1999) Calexcitin interacts with neuronal ryanodine receptors. Biochem J 341:423–433PubMedCrossRefGoogle Scholar
  29. 29.
    Gombos Z et al (2003) Conformational coupling of Mg2+ and Ca2+ on the three-state folding of calexcitin B. Biochemistry 42:5531–5539PubMedCrossRefGoogle Scholar
  30. 30.
    Erskine PT et al (2006) Structure of the neuronal protein calexcitin suggests a mode of interaction in signalling pathways of learning and memory. J Mol Biol 357:1536–1547PubMedCrossRefGoogle Scholar
  31. 31.
    Kilmartin JV (2003) Sfip has conserved centrin-binding sites and an essential function in budding yeast spindle body duplication. J Cell Biol 162:1211–1221PubMedCrossRefGoogle Scholar
  32. 32.
    Salisbury JL (2004) Sfip and centrin unravel a structural riddle. Curr Biol 14:R27–R29PubMedCrossRefGoogle Scholar
  33. 33.
    Durussel I et al (2000) Cation- and peptide-binding properties of human centrin 2. FEBS Lett 472:208–212PubMedCrossRefGoogle Scholar
  34. 34.
    Matei E et al (2003) The C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain. Biochemistry 42:1439–1450PubMedCrossRefGoogle Scholar
  35. 35.
    Cox JA et al (2005) Calcium and magnesium binding to human centrin 3 and interaction with target peptides. Biochemistry 44:840–850PubMedCrossRefGoogle Scholar
  36. 36.
    Veeraghavan S et al (2002) Structural independence of the two EF-hands of caltractin. J Biol Chem 277:28564–28571CrossRefGoogle Scholar
  37. 37.
    Radu L et al (2010) Scherffelia dubia centrin exhibits a specific mechanism for Ca2+-controlled target binding. Biochemistry 49:4383–4394PubMedCrossRefGoogle Scholar
  38. 38.
    Li S et al (2006) Structural role of Sfip-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173:867–877PubMedCrossRefGoogle Scholar
  39. 39.
    Miron S et al (2011) Binding of calcium, magnesium, and target peptides to Cdc31, the centrin of yeast Saccharomyces cerevisiae. Biochemistry 50:6409–6422PubMedCrossRefGoogle Scholar
  40. 40.
    Banfi B et al (2001) A calcium-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601PubMedCrossRefGoogle Scholar
  41. 41.
    Banfi B et al (2004) Mechanism of Ca2+ activation of NADPH oxidase 5 (NOX5). J Biol Chem 279:18383–18591Google Scholar
  42. 42.
    Tirone F, Radu L, Craescu CT, Cox JA (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49:761–771PubMedCrossRefGoogle Scholar
  43. 43.
    Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208PubMedCrossRefGoogle Scholar
  44. 44.
    Linse S, Thulin E, Sellers P (1993) Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k, stability, calcium binding and NMR studies. Protein Sci 2:985–1000PubMedCrossRefGoogle Scholar
  45. 45.
    Colowick SP, Womack FC (1969) Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem 244:774–777PubMedGoogle Scholar
  46. 46.
    Wiseman T, Williston S, Brands JF, Lin L-N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137PubMedCrossRefGoogle Scholar
  47. 47.
    Osawa M et al (2005) Mg2+ and Ca2+ differentially regulated DNA binding and dimerization of DREAM. J Biol Chem 280:18008–18014PubMedCrossRefGoogle Scholar
  48. 48.
    Hummel JP, Dryer WJ (1962) Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta 63:530–532PubMedCrossRefGoogle Scholar
  49. 49.
    Cornish-Bowden A, Koshland DE (1975) Diagnostic use of the hill (Logit and Nernst) plots. J Mol Biol 95:201–212PubMedCrossRefGoogle Scholar
  50. 50.
    Linse S, Forsen S (1995) Determinants that govern high-affinity calcium binding. Adv Second Messenger Phosphoprotein Res 30:89–151PubMedCrossRefGoogle Scholar
  51. 51.
    Klotz IM, Hunston DL (1979) Protein affinities for small molecules: conceptions and misconceptions. Arch Biochem Biophys 193: 314–428PubMedCrossRefGoogle Scholar
  52. 52.
    Potter JD, Gergely J (1975) The calcium and magnesium binding on troponin and their role in the regulation of myofibrillar ATPase. J Biol Chem 250:4628–4633PubMedGoogle Scholar
  53. 53.
    Moeschler H, Schaer J-J, Cox JA (1980) A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin. Eur J Biochem 111:73–78PubMedCrossRefGoogle Scholar
  54. 54.
    Engelborghs Y et al (1990) Kinetics of conformational changes in Nereis calcium-binding protein upon calcium and magnesium binding. J Biol Chem 265:18801–18815Google Scholar
  55. 55.
    Luan-Rilliet Y, Milos M, Cox JA (1992) Thermodynamics of cation binding to Nereis sarcoplasmic calcium-binding protein. Direct binding studies, microcalorimetry and conformational changes. Eur J Biochem 208:133–138PubMedCrossRefGoogle Scholar
  56. 56.
    Milos M, Comte M, Schaer J-J, Cox JA (1989) Evidence for four capital and six auxiliary cation-binding sites of calmodulin: divalent cation interactions monitored by direct binding and microcalorimetry. J Inorg Biochem 25:6279–6287Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of GenevaGenevaSwitzerland

Personalised recommendations