Advertisement

In Vivo Screening of S100B Inhibitors for Melanoma Therapy

  • Danna B. ZimmerEmail author
  • Rena G. Lapidus
  • David J. WeberEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 963)

Abstract

S100 proteins are markers for numerous cancers, and in many cases high S100 protein levels are a prognostic indicator for poor survival. One such case is S100B, which is overproduced in a very large percentage of malignant melanoma cases. Elevated S100B protein was more recently validated to have causative effects towards cancer progression via down-regulating the tumor suppressor protein, p53. Towards eliminating this problem in melanoma, targeting S100B with small molecule inhibitors was initiated. This work relies on numerous chemical biology technologies including structural biology, computer-aided drug design, compound screening, and medicinal chemistry approaches. Another important component of drug development is the ability to test compounds and various molecular scaffolds for their efficacy in vivo. This chapter briefly describes the development of S100B inhibitors, termed SBiXs, for melanoma therapy with a focus on the inclusion of in vivo screening at an early stage in the drug discovery process.

Key words

In vivo screening Preclinical testing Intratumoral delivery Systemic delivery Pharmacokinetics Pharmacodynamics Maximum tolerated dose Therapeutic window Genetically modified mouse models S100 proteins EF-hand 

Notes

Acknowledgments

These studies were supported by NIH grant CA107331 (DJW) and the Center for Biomolecular Therapeutics (CBT), The University of Maryland School of Medicine, and the Institute for Bioscience and Biotechnology Research (IBBR).

References

  1. 1.
    Lin J, Blake M, Tang C, Zimmer D, Rustandi RR, Weber DJ, Carrier F (2001) Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J Biol Chem 276:35037–35041PubMedCrossRefGoogle Scholar
  2. 2.
    Lin J, Yang Q, Yan Z, Markowitz J, Wilder PT, Carrier F, Weber DJ (2004) Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J Biol Chem 279:34071–34077PubMedCrossRefGoogle Scholar
  3. 3.
    Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ (2010) The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 285:27487–27498PubMedCrossRefGoogle Scholar
  4. 4.
    Markowitz J, Mackerell AD Jr, Carrier F, Charpentier TH, Weber DJ (2005) Design of Inhibitors for S100B. Current Top Med Chem 5:1093–1108CrossRefGoogle Scholar
  5. 5.
    Markowitz J, MacKerell AD Jr, Weber DJ (2007) A search for inhibitors of S100B, a member of the S100 family of calcium-binding proteins. Mini Rev Med Chem 7:609–616PubMedCrossRefGoogle Scholar
  6. 6.
    Smith J, Stewart BJ, Glaysher S, Peregrin K, Knight LA, Weber DJ, Cree IA (2010) The effect of pentamidine on melanoma ex vivo. Anticancer Drugs 21:181–185PubMedCrossRefGoogle Scholar
  7. 7.
    Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, MacKerell AD Jr, Weber DJ (2010) In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. Intl J High Throughput Screen 1:109–126Google Scholar
  8. 8.
    Xiong Z, O’Hanlon D, Becker LE, Roder J, MacDonald JF, Marks A (2000) Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 257:281–289PubMedCrossRefGoogle Scholar
  9. 9.
    Roltsch E, Holcomb L, Young KA, Marks A, Zimmer DB (2010) PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 7:78PubMedCrossRefGoogle Scholar
  10. 10.
    Tsoporis JN, Overgaard CB, Izhar S, Parker TG (2009) S100B modulates the hemodynamic response to norepinephrine stimulation. Am J Hypertens 22:1048–1053PubMedCrossRefGoogle Scholar
  11. 11.
    Schulte-Herbruggen O, Hortnagl H, Ponath G, Rothermundt M, Hellweg R (2008) Distinct regulation of brain-derived neurotrophic factor and noradrenaline in S100B knockout mice. Neurosci Lett 442:100–103PubMedCrossRefGoogle Scholar
  12. 12.
    Kim HS, Seto-Ohshima A, Nishiyama H, Itohara S (2011) Normal delay eyeblink conditioning in mice devoid of astrocytic S100B. Neurosci Lett 489:148–153PubMedCrossRefGoogle Scholar
  13. 13.
    Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC (2002) Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res 106:22–29PubMedCrossRefGoogle Scholar
  14. 14.
    Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci (Schol Ed) 3:1232–1262CrossRefGoogle Scholar
  15. 15.
    Zimmer DB, Weber DJ (2010) The calcium-dependent interaction of S100B with its protein targets. Cardiovasc Psychiatry Neurol pii:728052Google Scholar
  16. 16.
    Li C, Reddy TRK, Fischer PM, Dekker LV (2010) A Cy5-labeled S100A10 tracer used to identify inhibitors of the protein interaction with annexin A2. Assay Drug Dev Technol 8:85–95PubMedCrossRefGoogle Scholar
  17. 17.
    Reddy TR, Li C, Guo X, Myrvang HK, Fischer PM, Dekker LV (2011) Design, synthesis, and structure-activity relationship exploration of 1-substituted 4-aroyl-3-hydroxy-5-phenyl-1 H-pyrrol-2(5 H)-one analogues as inhibitors of the annexin A2-S100A10 protein interaction. J Med Chem 54:2080–2094PubMedCrossRefGoogle Scholar
  18. 18.
    Arumugam T, Ramachandran V, Logsdon CD (2006) Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. J Natl Cancer Inst 98:1806–1818PubMedCrossRefGoogle Scholar
  19. 19.
    Wright NT, Cannon BR, Zimmer DB, Weber DJ (2009) S100A1: structure, function, and therapeutic potential. Curr Chem Biol 3:138–145PubMedGoogle Scholar
  20. 20.
    Malashkevich VN, Dulyaninova NG, Ramagopal UA, Liriano MA, Varney KM, Knight D, Brenowitz M, Weber DJ, Almo SC, Bresnick AR (2010) Phenothiazines inhibit S100A4 function by inducing protein oligomerization. Proc Natl Acad Sci USA 107:8605–8610PubMedCrossRefGoogle Scholar
  21. 21.
    House RP, Garrett SC, Bresnick AR (2012) Moving aggressively: S100A4 and tumor invasion. In: Fatatis A (ed) Signaling pathways and molecular mediators in mestastasis. Springer, New York, Chapter 4Google Scholar
  22. 22.
    Mack GS, Marshall A (2010) Lost in migration. Nat Biotechnol 28:214–229PubMedCrossRefGoogle Scholar
  23. 23.
    Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742:69–79PubMedCrossRefGoogle Scholar
  24. 24.
    Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 277:4578–4590PubMedCrossRefGoogle Scholar
  25. 25.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214PubMedCrossRefGoogle Scholar
  26. 26.
    Weber DJ, Rustandi R, Carrier F, Zimmer DB (2000) Interaction of dimeric S100B(bb) with the tumor suppressor protein p53: A model for Ca2+ dependent S100-target protein interactions. In: Pochet R (ed) CALCIUM: the molecular basis of calcium action in biology and medicine. Kluwer Academic, Dordrecht, The Netherlands, pp 521–539CrossRefGoogle Scholar
  27. 27.
    Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD Jr, Toth EA, Weber DJ (2009) Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 48:6202–6212PubMedCrossRefGoogle Scholar
  28. 28.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534PubMedCrossRefGoogle Scholar
  29. 29.
    Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2002) Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci USA 99:3428–3433PubMedCrossRefGoogle Scholar
  30. 30.
    Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ (2006) Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. Biochium Biophys Acta 1763:1284–1297CrossRefGoogle Scholar
  31. 31.
    Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH, Martin SS, Weber DJ, Bachman KE (2009) Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res 69:8275–8283PubMedCrossRefGoogle Scholar
  32. 32.
    Weiss MB, Vitolo MI, Mohseni M, Rosen DM, Denmeade SR, Park BH, Weber DJ, Bachman KE (2010) Deletion of p53 in human mammary epithelial cells causes chromosomal instability and altered therapeutic response. Oncogene 29:4715–4724PubMedCrossRefGoogle Scholar
  33. 33.
    Nemunaitis J (2011) Head and neck cancer: response to p53-based therapeutics. Head Neck 33:131–134PubMedCrossRefGoogle Scholar
  34. 34.
    Citrin D, Camphausen K, Wood BJ, Quezado M, Denobile J, Pingpank JF, Royal RE, Alexander HR, Seidel G, Steinberg SM, Shuttack Y, Libutti SK (2010) A pilot feasibility study of TNFerade biologic with capecitabine and radiation therapy followed by surgical resection for the treatment of rectal cancer. Oncology 79:382–388PubMedCrossRefGoogle Scholar
  35. 35.
    Weide B, Eigentler TK, Pflugfelder A, Leiter U, Meier F, Bauer J, Schmidt D, Radny P, Pfohler C, Garbe C (2011) Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother 60:487–493PubMedCrossRefGoogle Scholar
  36. 36.
    Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrie M, Meng Y, Richard M, Parizot C, Laigle-Donadey F, Gorochov G, Psimaras D, Sanson M, Tibi A, Chinot O, Carpentier AF (2010) Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 12:401–408PubMedCrossRefGoogle Scholar
  37. 37.
    Akeda T, Yamanaka K, Kitagawa H, Kawabata E, Tsuda K, Kakeda M, Omoto Y, Habe K, Isoda K, Kurokawa I, Mizutani H (2011) Intratumoral injection of OK-432 suppresses metastatic squamous cell carcinoma lesion inducing interferon-gamma and tumour necrosis factor-alpha. Clin Exp Dermatol 37:193–194. doi: 10.1111 PubMedCrossRefGoogle Scholar
  38. 38.
    Jenkinson MD, Smith TS, Haylock B, Husband D, Shenoy A, Vinjamuri S, Walker C, Pietronigro D, Warnke PC (2010) Phase II trial of intratumoral BCNU injection and radiotherapy on untreated adult malignant glioma. J Neurooncol 99:103–113PubMedCrossRefGoogle Scholar
  39. 39.
    He J, Ying W, Yang H, Xu X, Shao W, Guan Y, Jiang M, Wu Y, Zhong B, Wang D, Tucker S, Zhong N (2009) Gemcitabine plus cisplatin chemotherapy with concurrent para-toluenesulfonamide local injection therapy for peripherally advanced nonsmall cell lung cancer larger than 3 cm in the greatest dimension. Anticancer Drugs 20:838–844PubMedCrossRefGoogle Scholar
  40. 40.
    Dharmapuri S, Peruzzi D, Marra E, Palombo F, Bett AJ, Bartz SR, Yong M, Ciliberto G, La Monica N, Buser CA, Toniatti C, Aurisicchio L (2011) Intratumor RNA interference of cell cycle genes slows down tumor progression. Gene Ther 18:727–733PubMedCrossRefGoogle Scholar
  41. 41.
    Moyer JS, Li J, Wei S, Teitz-Tennenbaum S, Chang AE (2008) Intratumoral dendritic cells and chemoradiation for the treatment of murine squamous cell carcinoma. J Immunother 31:885–895PubMedCrossRefGoogle Scholar
  42. 42.
    Houot R, Levy R (2009) T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood 113:3546–3552PubMedCrossRefGoogle Scholar
  43. 43.
    Matsuo M, Yamaguchi K, Feril LB Jr, Endo H, Ogawa K, Tachibana K, Nakayama J (2011) Synergistic inhibition of malignant melanoma proliferation by melphalan combined with ultrasound and microbubbles. Ultrason Sonochem 18:1218–1224PubMedCrossRefGoogle Scholar
  44. 44.
    Pina Y, Houston SK, Murray TG, Boutrid H, Celdran M, Feuer W, Shi W, Hernandez E, Lampidis TJ (2010) Focal, periocular delivery of 2-deoxy-D-glucose as adjuvant to chemotherapy for treatment of advanced retinoblastoma. Invest Ophthalmol Vis Sci 51:6149–6156PubMedCrossRefGoogle Scholar
  45. 45.
    Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, Romond E (2009) Intratumoral delivery of Paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS PharmSciTech 10:410–417PubMedCrossRefGoogle Scholar
  46. 46.
    Shikanov A, Shikanov S, Vaisman B, Golenser J, Domb AJ (2008) Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Int J Pharm 358:114–120PubMedCrossRefGoogle Scholar
  47. 47.
    Yoo GH, Subramanian G, Piechocki MP, Ensley JF, Kucuk O, Tulunay OE, Lonardo F, Kim H, Won J, Stevens T, Lin HS (2008) Effect of docetaxel on the surgical tumor microenvironment of head and neck cancer in murine models, Archives Otolaryngology. Arch Otolaryngol Head Neck Surg 134:735–742PubMedCrossRefGoogle Scholar
  48. 48.
    Shikanov S, Shikanov A, Gofrit O, Nyska A, Corn B, Domb AJ (2009) Intratumoral delivery of paclitaxel for treatment of orthotopic prostate cancer. J Pharm Sci 98:1005–1014PubMedCrossRefGoogle Scholar
  49. 49.
    Sausville EA, Burger AM (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66:3351–3354, discussion 3354PubMedCrossRefGoogle Scholar
  50. 50.
    Becker JC, Houben R, Schrama D, Voigt H, Ugurel S, Reisfeld RA (2010) Mouse models for melanoma: a personal perspective. Exp Dermatol 19:157–164PubMedCrossRefGoogle Scholar
  51. 51.
    Heyer J, Kwong LN, Lowe SW, Chin L (2010) Non-germline genetically engineered mouse models for translational cancer research. Nature Rev Cancer 10:470–480CrossRefGoogle Scholar
  52. 52.
    de Jong M, Maina T (2010) Of mice and humans: are they the same?—implications in cancer translational research. J Nuc Med 51:501–504CrossRefGoogle Scholar
  53. 53.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, Kato M, Prevost-Blondel A, Chow P, Yang H, Abastado JP (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120:2030–2039PubMedCrossRefGoogle Scholar
  54. 54.
    Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V, Thompson JD, Cheng JH, Bou Reslan H, Ho CCK, Cao TC, Lee CV, Nannini MA, Fuh G, Carano RAD, Koeppen H, Yu RX, Forrest WF, Plowman GD, Johnson L (2010) Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 28:585–593PubMedCrossRefGoogle Scholar
  55. 55.
    Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner JW 2nd, DePinho RA (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11:2822–2834PubMedCrossRefGoogle Scholar
  56. 56.
    Larue L, Beermann F (2007) Cutaneous melanoma in genetically modified animals. Pigment Cell Res 20:485–497PubMedCrossRefGoogle Scholar
  57. 57.
    Atkinson JM, Shelat AA, Carcaboso AM, Kranenburg TA, Arnold LA, Boulos N, Wright K, Johnson RA, Poppleton H, Mohankumar KM, Feau C, Phoenix T, Gibson P, Zhu L, Tong Y, Eden C, Ellison DW, Priebe W, Koul D, Yung WK, Gajjar A, Stewart CF, Guy RK, Gilbertson RJ (2011) An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20:384–399PubMedCrossRefGoogle Scholar
  58. 58.
    Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Center for Biomolecular TherapeuticsThe University of Maryland School of MedicineBaltimoreUSA
  2. 2.Center for Biomolecular Therapeutics, Marlene and Stewart Greenebaum Cancer CenterUniversity of MarylandBaltimoreUSA
  3. 3.Center for Biomolecular TherapeuticsThe University of Maryland, School of Medicine, The University of MarylandBaltimoreUSA

Personalised recommendations