Advertisement

Phage Display Selection of Peptides that Target Calcium-Binding Proteins

  • Stefan W. VetterEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 963)

Abstract

Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 109 or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions.

The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

Key words

Phage display Peptide library Ph.D.-12 library Filamentous phage M13 Calcium-binding proteins S100B Calcium-dependent peptide binding Phage ELISA EF-hand 

References

  1. 1.
    Katz BA (1997) Structural and mechanistic determinants of affinity and specificity of ligands discovered or engineered by phage display. Annu Rev Biophys Biomol Struct 26:27–45PubMedCrossRefGoogle Scholar
  2. 2.
    Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410PubMedCrossRefGoogle Scholar
  3. 3.
    Burritt JB, Bond CW, Doss KW, Jesaitis AJ (1996) Filamentous phage display of oligopeptide libraries. Anal Biochem 238:1–13PubMedCrossRefGoogle Scholar
  4. 4.
    Rodi DJ, Makowski L (1999) Phage-display technology—finding a needle in a vast molecular haystack. Curr Opin Biotechnol 10:87–93PubMedCrossRefGoogle Scholar
  5. 5.
    Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63PubMedCrossRefGoogle Scholar
  6. 6.
    Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction interfaces. Curr Opin Struct Biol 17:481–487PubMedCrossRefGoogle Scholar
  7. 7.
    Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154PubMedCrossRefGoogle Scholar
  8. 8.
    Hansson M, Samuelson P, Gunneriusson E, Stahl S (2001) Surface display on gram positive bacteria. Comb Chem High Throughput Screen 4:171–184PubMedCrossRefGoogle Scholar
  9. 9.
    Desvaux M, Dumas E, Chafsey I, Hebraud M (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256:1–15PubMedCrossRefGoogle Scholar
  10. 10.
    Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473PubMedCrossRefGoogle Scholar
  11. 11.
    Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134PubMedCrossRefGoogle Scholar
  12. 12.
    Feldhaus MJ, Siegel RW (2004) Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods 290:69–80PubMedCrossRefGoogle Scholar
  13. 13.
    Schaffitzel C, Hanes J, Jermutus L, Pluckthun A (1999) Ribosom display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 231:119–135PubMedCrossRefGoogle Scholar
  14. 14.
    Pluckthun A, Amstutz P, Forrer P, Zahnd C (2001) In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 12:400–405PubMedCrossRefGoogle Scholar
  15. 15.
    Pluckthun A (2012) Ribosome display: a perspective. Methods Mol Biol 805:3–28PubMedCrossRefGoogle Scholar
  16. 16.
    Makowski L (1994) Phage display: structure, assembly and engineering of filamentous bacteriophage M13. Curr Opin Struct Biol 4:225–230CrossRefGoogle Scholar
  17. 17.
    Georgieva Y, Konthur Z (2011) Design and screening of M13 phage display cDNA libraries. Molecules 16:1667–1681PubMedCrossRefGoogle Scholar
  18. 18.
    Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 87:6378–6382PubMedCrossRefGoogle Scholar
  19. 19.
    Hust M, Dubel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71–96PubMedGoogle Scholar
  20. 20.
    Lowman HB, Wells JA (1991) Monovalent phage display: a method for selecting variant proteins from random libraries. Methods 3:205–216CrossRefGoogle Scholar
  21. 21.
    Dunn IS (1996) Phage display of proteins. Curr Opin Biotechnol 7:547–553PubMedCrossRefGoogle Scholar
  22. 22.
    Soderlind E, Simonsson AC, Borrebaeck CA (1992) Phage display technology in antibody engineering: design of phagemid vectors and in vitro maturation systems. Immunol Rev 130:109–124PubMedCrossRefGoogle Scholar
  23. 23.
    Noren KA, Noren CJ (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23:169–178PubMedCrossRefGoogle Scholar
  24. 24.
    Zwick MB, Bonnycastle LL, Noren KA, Venturini S, Leong E, Barbas CF 3rd, Noren CJ, Scott JK (1998) The maltose-binding protein as a scaffold for monovalent display of peptides derived from phage libraries. Anal Biochem 264:87–97PubMedCrossRefGoogle Scholar
  25. 25.
    Birkenmeier G, Osman AA, Kopperschlager G, Mothes T (1997) Epitope mapping by screening of phage display libraries of a monoclonal antibody directed against the receptor binding domain of human alpha-2-macroglobulin. FEBS Lett 416:193–196PubMedCrossRefGoogle Scholar
  26. 26.
    Dore JM, Morard F, Vita N, Wijdenes J (1998) Identification and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies. FEBS Lett 426:67–70PubMedCrossRefGoogle Scholar
  27. 27.
    Youn JH, Myung HJ, Liav A, Chatterjee D, Brennan PJ, Choi IH, Cho SN, Shin JS (2004) Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae. FEMS Immunol Med Microbiol 41:51–57PubMedCrossRefGoogle Scholar
  28. 28.
    Rowley MJ, O’Connor K, Wijeyewickrema L (2004) Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. Biotechnol Annu Rev 10:151–188PubMedCrossRefGoogle Scholar
  29. 29.
    Spillner E, Deckers S, Grunwald T, Bredehorst R (2003) Paratope-based protein identification by antibody and peptide phage display. Anal Biochem 321:96–104PubMedCrossRefGoogle Scholar
  30. 30.
    Rozinov MN, Nolan GP (1998) Evolution of peptides that modulate the spectral qualities of bound, small-molecule fluorophores. Chem Biol 5:713–728PubMedCrossRefGoogle Scholar
  31. 31.
    Miura Y, Sasao Y, Kamihira M, Sakaki A, Iijima S, Kobayashi K (2004) Peptides binding to a Gb3 mimic selected from a phage library. Biochim Biophys Acta 1673:131–138PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao SW, Shen PP, Zhou Y, Wei Y, Xin XB, Hua ZC (2005) Selecting peptide ligands of microcystin-LR from phage displayed random libraries. Environ Int 31:535–541PubMedCrossRefGoogle Scholar
  33. 33.
    Pustowka A, Dietz J, Ferner J, Baumann M, Landersz M, Konigs C, Schwalbe H, Dietrich U (2003) Identification of peptide ligands for target RNA structures derived from the HIV-1 packaging signal psi by screening phage-displayed peptide libraries. Chembiochem 4: 1093–1097PubMedCrossRefGoogle Scholar
  34. 34.
    Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 281:17699–17706PubMedCrossRefGoogle Scholar
  35. 35.
    Dintilhac A, Bernues J (2002) HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J Biol Chem 277:7021–7028PubMedCrossRefGoogle Scholar
  36. 36.
    Bitto E, McKay DB (2003) The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J Biol Chem 278:49316–49322PubMedCrossRefGoogle Scholar
  37. 37.
    Carter DM, Gagnon JN, Damlaj M, Mandava S, Makowski L, Rodi DJ, Pawelek PD, Coulton JW (2006) Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. J Mol Biol 357:236–251PubMedCrossRefGoogle Scholar
  38. 38.
    Hu B, Gilkes DM, Chen J (2007) Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 67:8810–8817PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson TJ, Alkon DL (2007) Protection against beta-amyloid-induced apoptosis by peptides interacting with beta-amyloid. J Biol Chem 282:31238–31249PubMedCrossRefGoogle Scholar
  40. 40.
    Huang J, Ru B, Dai P (2011) Bioinformatics resources and tools for phage display. Molecules 16:694–709PubMedCrossRefGoogle Scholar
  41. 41.
    Day LA (1969) Conformations of single-stranded DNA and coat protein in fd bacteriophage as revealed by ultraviolet absorption spectroscopy. J Mol Biol 39:265–277PubMedCrossRefGoogle Scholar
  42. 42.
    IvnenkovV V, Jamieson GA, Gruenstein E, Dimlich RVW (1995) Characterization of S-100b binding epitopes. J Biol Chem 270: 14651–14658CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations