Skip to main content

Super-Resolution Microscopy of the Neuronal Calcium-Binding Proteins Calneuron-1 and Caldendrin

Part of the Methods in Molecular Biology book series (MIMB,volume 963)

Abstract

Calcium (Ca2+) signaling in neurons is mediated by plethora of calcium binding proteins with many of them belonging to the Calmodulin family of calcium sensors. Many studies have shown that the subcellular localization of neuronal EF-hand Ca2+-sensors is crucial for their cellular function. To overcome the resolution limit of classical fluorescence and confocal microscopy various imaging techniques have been developed recently that improve the resolution by an order of magnitude in all dimensions. This new microscope techniques make co-localization studies of Ca2+-binding proteins more reliable and help to get insights into the macromolecular organization of intracellular structures and signaling pathways beyond the diffraction limit of visible light.

Key words

  • STED microscopy
  • Synaptic proteins
  • Cytoskeleton
  • Golgi apparatus
  • Calneuron
  • Caldendrin
  • Calcium
  • EF-hand

Johannes Hradsky and Marina Mikhaylova have contributed equally to the work.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-230-8_10
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-230-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648

    PubMed  CrossRef  CAS  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    PubMed  CrossRef  CAS  Google Scholar 

  3. Pozzo-Miller LD, Pivovarova NB, Leapman RD et al (1997) Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices. J Neurosci 17: 8729–8738

    PubMed  CAS  Google Scholar 

  4. Mikhaylova M, Hradsky J, Kreutz MR (2011) Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 118:695–713

    PubMed  CrossRef  CAS  Google Scholar 

  5. Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci U S A 103:1159–1164

    PubMed  CrossRef  CAS  Google Scholar 

  6. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    PubMed  CrossRef  CAS  Google Scholar 

  7. Fries R, Reddy PP, Mikhaylova M et al (2010) Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. J Neurochem 113:1150–1162

    PubMed  CAS  Google Scholar 

  8. McCue HV, Burgoyne RD, Haynes LP (2009) Membrane targeting of the EF-hand containing calcium-sensing proteins CaBP7 and CaBP8. Biochem Biophys Res Commun 380: 825–831

    PubMed  CrossRef  CAS  Google Scholar 

  9. McCue HV, Burgoyne RD, Haynes LP (2011) Determination of the membrane topology of the small EF-Hand Ca2+-sensing proteins CaBP7 and CaBP8. PLoS One 6:e17853

    PubMed  CrossRef  CAS  Google Scholar 

  10. Mikhaylova M, Reddy PP, Munsch T et al (2009) Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking. Proc Natl Acad Sci USA 106:9093–9098

    PubMed  CrossRef  CAS  Google Scholar 

  11. Hradsky J, Raghuram V, Reddy PP et al (2011) Post-translational membrane insertion of tail-anchored transmembrane EF-hand Ca2+ sensor Calneurons requires the TRC40/Asna1 protein chaperone. J Biol Chem 286:36762–36776

    PubMed  CrossRef  CAS  Google Scholar 

  12. Mikhaylova M, Reddy PP, Kreutz MR (2010) Role of neuronal Ca2+  -sensor proteins in Golgi-cell-surface membrane traffic. Biochem Soc Trans 38:177–180

    PubMed  CrossRef  CAS  Google Scholar 

  13. Shih PY, Lin CL, Cheng PW et al (2009) Calneuron I inhibits Ca2+ channel activity in bovine chromaffin cells. Biochem Biophys Res Commun 388:549–553

    PubMed  CrossRef  CAS  Google Scholar 

  14. Seidenbecher CI, Langnaese K, Sanmartí-Vila L et al (1998) Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J Biol Chem 273:21324–21331

    PubMed  CrossRef  CAS  Google Scholar 

  15. Laube G, Seidenbecher CI, Richter K et al (2002) The neuron-specific Ca2+-binding protein caldendrin: gene structure, splice isoforms and expression in the rat central nervous system. Mol Cell Neurosci 19:459–475

    PubMed  CrossRef  CAS  Google Scholar 

  16. Bernstein HG, Seidenbecher CI, Smalla KH et al (2003) Distribution and cellular localization of caldendrin immunoreactivity in adult human forebrain. J Histochem Cytochem 51:1109–1112

    PubMed  CrossRef  CAS  Google Scholar 

  17. Smalla KH, Seidenbecher CI, Tischmeyer W et al (2003) Kainate-induced epileptic seizures induce a recruitment of caldendrin to the postsynaptic density in rat brain. Brain Res Mol Brain Res 19:159–162

    CrossRef  Google Scholar 

  18. Mikhaylova M, Sharma Y, Reissner C et al (2006) Neuronal Ca2+ signaling via caldendrin and calneurons. Biochim Biophys Acta 1763:1229–1237

    PubMed  CrossRef  CAS  Google Scholar 

  19. McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2. doi:10.1101/cshperspect.a004085

  20. Seidenbecher CI, Landwehr M, Smalla KH et al (2004) Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca2+-sensor proteins. J Mol Biol 336:957–970

    PubMed  CrossRef  CAS  Google Scholar 

  21. Dieterich DC, Karpova A, Mikhaylova M et al (2008) Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol 6:e34, Erratum in: PLoS Biol. 7 (2009):e1000022

    PubMed  CrossRef  Google Scholar 

  22. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    PubMed  CrossRef  CAS  Google Scholar 

  23. Hell SW, Stelzer EHK, Lindek S et al (1994) Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. Opt Lett 19:222–224

    PubMed  CrossRef  CAS  Google Scholar 

  24. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198: 82–87

    PubMed  CrossRef  CAS  Google Scholar 

  25. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluor-escence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102: 13081–13086

    PubMed  CrossRef  CAS  Google Scholar 

  26. Heintzmann R, Cremer C (1999) Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–196

    CrossRef  Google Scholar 

  27. Esa A, Edelmann P, Kreth G et al (2000) Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J Microsc 199: 96–105

    PubMed  CrossRef  CAS  Google Scholar 

  28. Lemmer P, Gunkel M, Baddeley D et al (2008) SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B 93: 1–12

    CrossRef  CAS  Google Scholar 

  29. Hell SW, Kroug M (1995) Ground-state-depletion: a concept for breaking the diffraction resolution limit. Appl Phys B 60: 495–497

    CrossRef  Google Scholar 

  30. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission. Opt Lett 19:780–782

    PubMed  CrossRef  CAS  Google Scholar 

  31. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24:954–956

    PubMed  CrossRef  CAS  Google Scholar 

  32. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    PubMed  CrossRef  CAS  Google Scholar 

  33. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    PubMed  CrossRef  CAS  Google Scholar 

  34. Abbe E (1873) Beiträge zur Theorie des Mikroskops und ihrer mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:411–468

    Google Scholar 

  35. Einstein A (1917) Zur Quantentheorie der Strahlung. Physik Zeitschr 18:121–128

    CAS  Google Scholar 

  36. Staudt T, Lang MC, Medda R et al (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9

    PubMed  CrossRef  CAS  Google Scholar 

  37. Cases-Langhoff C, Voss B, Garner AM et al (1996) Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. Eur J Cell Biol 69:214–223

    PubMed  CAS  Google Scholar 

  38. Tom Dieck S, Sanmartí-Vila L, Langnaese K et al (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    PubMed  CrossRef  CAS  Google Scholar 

  39. Dresbach T, Hempelmann A, Spilker C et al (2003) Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Mol Cell Neurosci 23:279–291

    PubMed  CrossRef  CAS  Google Scholar 

  40. Richter K, Langnaese K, Kreutz MR et al (1999) Presynaptic cytomatrix protein bassoon is localized at both excitatory and inhibitory synapses of rat brain. J Comp Neurol 408:437–448

    PubMed  CrossRef  CAS  Google Scholar 

  41. Dani A, Huang B, Bergan J et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856

    PubMed  CrossRef  CAS  Google Scholar 

  42. Brakeman PR, Lanahan AA, O’Brien R et al (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    PubMed  CrossRef  CAS  Google Scholar 

  43. Yuan JP, Kiselyov K, Shin DM et al (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    PubMed  CrossRef  CAS  Google Scholar 

  44. Tu JC, Xiao B, Naisbitt S et al (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    PubMed  CrossRef  CAS  Google Scholar 

  45. Sala C, Piech V, Wilson NR et al (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31:115–130

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: BMBF “Novel Optics” VDI 13N10077 and DFG SFB 854 TPZ (WZ) and DFG Kr1879/3-1 and SFB 854 TP7 (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Zuschratter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hradsky, J., Mikhaylova, M., Karpova, A., Kreutz, M.R., Zuschratter, W. (2013). Super-Resolution Microscopy of the Neuronal Calcium-Binding Proteins Calneuron-1 and Caldendrin. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols