Advertisement

Measurement of Intracellular Ca2+ Concentration in Single Cells Using Ratiometric Calcium Dyes

  • Sonal Srikanth
  • Yousang GwackEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 963)

Abstract

Measurement of intracellular Ca2+ concentration ([Ca2+]i) is useful to study the upstream and downstream events of Ca2+ signaling. Ca2+-binding proteins including EF-hand-containing proteins are important downstream effector molecules after an increase of [Ca2+]i. Conversely, these proteins can also act as key modulators for regulation of [Ca2+]i by sensing the Ca2+ levels in the intracellular organelles and cytoplasm. Here we describe a single-cell Ca2+ imaging technique that was used to measure the intracellular Ca2+ levels to examine the function of Ca2+-binding proteins, STIM1 and Calcium release-activated Calcium channel regulator 2A (CRACR2A), using ratiometric Ca2+ dye Fura-2 in adherent and non-adherent cells.

Key words

Store-operated Ca2+ entry Calcium release-activated Calcium (CRAC) channel Nuclear factor of activated T cells (NFAT) Ratiometric Ca2+ measurements Fura-2 Intracellular Ca2+ concentration EF-hand-containing proteins STIM1 Orai1 CRAC channel regulator (CRACR) 2A 

Notes

Acknowledgments

This work was supported by the National Institute of Health grants AI-083432 and AI-088393 to YG.

References

  1. 1.
    Lewis RS (2011) Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol. doi:  10.1101/cshperspect.a003970
  2. 2.
    Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22PubMedCrossRefGoogle Scholar
  3. 3.
    Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87PubMedCrossRefGoogle Scholar
  4. 4.
    Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533PubMedCrossRefGoogle Scholar
  5. 5.
    Hogan PG, Chen L, Nardone J et al (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232PubMedCrossRefGoogle Scholar
  6. 6.
    Srikanth S, Jung HJ, Kim KD et al (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446PubMedCrossRefGoogle Scholar
  7. 7.
    Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241PubMedCrossRefGoogle Scholar
  8. 8.
    Roos J, Digregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905PubMedCrossRefGoogle Scholar
  10. 10.
    Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185PubMedCrossRefGoogle Scholar
  11. 11.
    Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362PubMedCrossRefGoogle Scholar
  13. 13.
    Gwack Y, Srikanth S, Feske S et al (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243PubMedCrossRefGoogle Scholar
  14. 14.
    Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma ­membrane junctions. Annu Rev Biochem 80:33.31–33.28CrossRefGoogle Scholar
  15. 15.
    Mercer JC, Dehaven WI, Smyth JT et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990PubMedCrossRefGoogle Scholar
  16. 16.
    Peinelt C, Vig M, Koomoa DL et al (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773PubMedCrossRefGoogle Scholar
  17. 17.
    Soboloff J, Spassova MA, Tang XD et al (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665PubMedCrossRefGoogle Scholar
  18. 18.
    Muik M, Frischauf I, Derler I et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022PubMedCrossRefGoogle Scholar
  19. 19.
    Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890PubMedCrossRefGoogle Scholar
  20. 20.
    Yuan JP, Zeng W, Dorwart MR et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343PubMedCrossRefGoogle Scholar
  21. 21.
    Navarro-Borelly L, Somasundaram A, Yamashita M et al (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401PubMedCrossRefGoogle Scholar
  22. 22.
    Muik M, Fahrner M, Derler I et al (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426PubMedCrossRefGoogle Scholar
  23. 23.
    Liou J, Fivaz M, Inoue T et al (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306PubMedCrossRefGoogle Scholar
  24. 24.
    Mullins FM, Park CY, Dolmetsch RE et al (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500PubMedCrossRefGoogle Scholar
  25. 25.
    Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299PubMedCrossRefGoogle Scholar
  26. 26.
    Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507PubMedCrossRefGoogle Scholar
  27. 27.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysiologyDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations