Skip to main content

Usefulness of Physcomitrella patens for Studying Plant Organogenesis

  • Protocol
  • First Online:
Plant Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 959))

Abstract

In this chapter, we review the main organogenesis features and associated regulation processes of the moss Physcomitrella patens (P. patens), the model plant for the Bryophytes. We highlight how the study of this descendant of the earliest plant species that colonized earth, brings useful keys to understand the mechanisms that determine and control both vascular and non vascular plants organogenesis. Despite its simple morphogenesis pattern, P. patens still requires the fine tuning of organogenesis regulators, including hormone signalling, common to the whole plant kingdom, and which study is facilitated by a high number of molecular tools, among which the powerful possibility of gene targeting/replacement. The recent discovery of moss cells reprogramming capacity completes the picture of an excellent model for studying plant organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Curr Biol 21:R331–R337

    PubMed  CAS  Google Scholar 

  2. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    CAS  Google Scholar 

  3. Reski R, Reynolds S, Wehe M, Kleberjanke T, Kruse S (1998) Moss (Physcomitrella Patens) expressed sequence tags include several sequences which are novel for plants. Bot Acta 111:143–149

    CAS  Google Scholar 

  4. Rensing SA, Rombauts S, Van de Peer Y, Reski R (2002) Moss transcriptome and beyond. Trends Plant Sci 7:535–538

    PubMed  CAS  Google Scholar 

  5. Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    PubMed  CAS  Google Scholar 

  6. Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    PubMed  CAS  Google Scholar 

  7. Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    PubMed  CAS  Google Scholar 

  8. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    PubMed  CAS  Google Scholar 

  9. Quatrano RS, McDaniel SF, Khandelwal A, Perroud PF, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182–189

    PubMed  CAS  Google Scholar 

  10. Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543

    PubMed  CAS  Google Scholar 

  11. Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    PubMed  CAS  Google Scholar 

  12. Menand B, Calder G, Dolan L (2007) Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. J Exp Bot 58:1843–1849

    PubMed  CAS  Google Scholar 

  13. Schumaker KS, Dietrich MA (1998) Hormone-induced signaling during moss development. Annu Rev Plant Physiol Plant Mol Biol 49:501–523

    PubMed  CAS  Google Scholar 

  14. Pressel S, Ligrone R, Duckett JG (2008) Cellular differentiation in moss protonemata: a morphological and experimental study. Ann Bot 102:227–245

    PubMed  Google Scholar 

  15. Harrison CJ, Roeder AH, Meyerowitz EM, Langdale JA (2009) Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol 19:461–471

    PubMed  CAS  Google Scholar 

  16. Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186

    PubMed  CAS  Google Scholar 

  17. Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M (2003) Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130:4835–4846

    PubMed  CAS  Google Scholar 

  18. Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-Box gene in the moss Physcomitrella patens. Plant Biol (Stuttg) 4:595–602

    CAS  Google Scholar 

  19. Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    PubMed  CAS  Google Scholar 

  20. Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS (2009) Culturing the moss Physcomitrella patens. Cold Spring Harb Protoc 2009, pdb prot5136

    Google Scholar 

  21. Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens using isopentenyladenine. Planta 165:354–358

    CAS  Google Scholar 

  22. Perroud PF, Cove DJ, Quatrano RS, McDaniel SF (2011) An experimental method to facilitate the identification of hybrid sporophytes in the moss Physcomitrella patens using fluorescent tagged lines. New Phytol 191:301–306

    PubMed  Google Scholar 

  23. Decker EL, Reski R (2007) Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol 18:393–398

    PubMed  CAS  Google Scholar 

  24. Thevenin J, Dubos C, Xu W, Le Gourrierec J, Kelemen Z, Charlot F, Nogue F, Lepiniec L, Dubreucq B (2012) A new system for fast and quantitative analysis of heterologous gene expression in plants. New Phytol 193:504–512

    PubMed  CAS  Google Scholar 

  25. Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    PubMed  CAS  Google Scholar 

  26. Schaefer DG, Zryd JP (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127:1430–1438

    PubMed  CAS  Google Scholar 

  27. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    PubMed  CAS  Google Scholar 

  28. Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis (review). Mech Dev 82:3–21

    PubMed  Google Scholar 

  29. Sauer B (1993) Manipulation of the transgene by site-specific recombination: use of cre recombinase. Methods Enzymol 225:890–900

    PubMed  CAS  Google Scholar 

  30. Schaefer DG, Zrÿd J-P (2004) Principles of targeted mutagenesis in the moss Physcomitrella patens. In: Wood AJ, Oliver MJ, Cove D (eds) New frontiers in bryology. Kluwer Academic Publishers, Dordrecht, pp 37–49

    Google Scholar 

  31. Schween G, Egener T, Fritzowsky D, Granado J, Guitton MC, Hartmann N, Hohe A, Holtorf H, Lang D, Lucht JM, Reinhard C, Rensing SA, Schlink K, Schulte J, Reski R (2005) Large-scale analysis of 73 329 physcomitrella plants transformed with different gene disruption libraries: production parameters and mutant phenotypes. Plant Biol (Stuttg) 7:228–237

    CAS  Google Scholar 

  32. Hiwatashi Y, Nishiyama T, Fujita T, Hasebe M (2001) Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens. Plant J 28:105–116

    PubMed  CAS  Google Scholar 

  33. Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    PubMed  CAS  Google Scholar 

  34. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    PubMed  CAS  Google Scholar 

  35. Khraiwesh B, Fattash I, Arif MA, Frank W (2011) Gene function analysis by artificial microRNAs in Physcomitrella patens. Methods Mol Biol 744:57–79

    PubMed  CAS  Google Scholar 

  36. Vidali L, Augustine RC, Fay SN, Franco P, Pattavina KA, Bezanilla M (2009) Rapid screening for temperature-sensitive alleles in plants. Plant Physiol 151:506–514

    PubMed  CAS  Google Scholar 

  37. Saidi Y, Finka A, Chakhporanian M, Zryd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711

    PubMed  CAS  Google Scholar 

  38. Finka A, Schaefer DG, Saidi Y, Goloubinoff P, Zryd JP (2007) In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens. New Phytol 174:63–76

    PubMed  CAS  Google Scholar 

  39. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 106:16321–16326

    PubMed  CAS  Google Scholar 

  40. Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tuzel E, Bezanilla M (2010) Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–1882

    PubMed  CAS  Google Scholar 

  41. Wu SZ, Ritchie JA, Pan AH, Quatrano RS, Bezanilla M (2011) Myosin VIII regulates protonemal patterning and developmental timing in the moss physcomitrella patens. Mol Plant 4:909–921

    Google Scholar 

  42. Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    PubMed  CAS  Google Scholar 

  43. Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hulskamp M (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–977

    PubMed  CAS  Google Scholar 

  44. Perroud PF, Quatrano RS (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil Cytoskeleton 63:162–171

    Google Scholar 

  45. Finka A, Saidi Y, Goloubinoff P, Neuhaus JM, Zryd JP, Schaefer DG (2008) The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens. Cell Motil Cytoskeleton 65:769–784

    PubMed  CAS  Google Scholar 

  46. Perroud PF, Quatrano RS (2008) BRICK1 is required for apical cell growth in filaments of the moss Physcomitrella patens but not for gametophore morphology. Plant Cell 20:411–422

    PubMed  CAS  Google Scholar 

  47. Traas J, Bellini C, Nacry P, Kronenberg J, Bouchez D, Caboche M (1995) Normal differentiation pattern in plants lacking microtubular preprophase band. Nature 375:676–677

    CAS  Google Scholar 

  48. Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159

    PubMed  CAS  Google Scholar 

  49. Spinner L, Pastuglia M, Belcram K, Pegoraro M, Goussot M, Bouchez D, Schaefer DG (2010) The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants. Development 137:2733–2742

    PubMed  CAS  Google Scholar 

  50. Ashton NW, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss, Physcomitrella patens using auxin and cytokinin resistant mutants. Planta 144:427–435

    CAS  Google Scholar 

  51. Schumaker KS, Dietrich MA (1998) Hormone-induced signaling during moss development (review). Annu Rev Plant Physiol Plant Mol Biol 49:501–523

    PubMed  CAS  Google Scholar 

  52. Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K (2009) The evolution of nuclear auxin signalling. BMC Evol Biol 9:126

    PubMed  Google Scholar 

  53. Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1907–1912

    PubMed  CAS  Google Scholar 

  54. Jang G, Dolan L (2011) Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens. New phytol 192:319–327

    Google Scholar 

  55. Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186

    PubMed  CAS  Google Scholar 

  56. Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249

    PubMed  Google Scholar 

  57. Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ER, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284

    PubMed  CAS  Google Scholar 

  58. Schulz PA, Hofmann AH, Russo VE, Hartmann E, Laloue M, von Schwartzenberg K (2001) Cytokinin overproducing ove mutants of Physcomitrella patens show increased riboside to base conversion. Plant Physiol 126:1224–1231

    PubMed  CAS  Google Scholar 

  59. von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novak O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145:786–800

    Google Scholar 

  60. Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791

    PubMed  CAS  Google Scholar 

  61. Ishida K, Yamashino T, Nakanishi H, Mizuno T (2010) Classification of the genes involved in the two-component system of the moss Physcomitrella patens. Biosci Biotechnol Biochem 74:2542–2545

    PubMed  CAS  Google Scholar 

  62. Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss Protonemata—an experimental and immunofluorescence study of brood cell formation. Can J Bot-Rev Can Bot 71:1510–1519

    Google Scholar 

  63. Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D, Quatrano RS, Bahadur S, Stockley PG, Cuming AC (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    PubMed  CAS  Google Scholar 

  64. Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044

    PubMed  CAS  Google Scholar 

  65. Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    PubMed  CAS  Google Scholar 

  66. Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS (2010) Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. Plant Signal Behav 5:1061–1066

    PubMed  CAS  Google Scholar 

  67. Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y (2009) Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Mol Biol 70:327–340

    PubMed  CAS  Google Scholar 

  68. Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453

    PubMed  CAS  Google Scholar 

  69. Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T, Takezawa D (2010) Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol 152:1529–1543

    PubMed  CAS  Google Scholar 

  70. Sakata Y, Komatsu K, Taji T, Tanaka S (2009) Role of PP2C-mediated ABA signaling in the moss Physcomitrella patens. Plant Signal Behav 4:887–889

    PubMed  CAS  Google Scholar 

  71. Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ (2011) Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr Biol 21:1025–1029

    PubMed  CAS  Google Scholar 

  72. Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2007) The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079

    PubMed  CAS  Google Scholar 

  73. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230

    PubMed  CAS  Google Scholar 

  74. Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    PubMed  CAS  Google Scholar 

  75. Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H (2010) Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol 153:1085–1097

    PubMed  CAS  Google Scholar 

  76. Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345

    PubMed  CAS  Google Scholar 

  77. Ishida K, Yamashino T, Nakanishi H, Mizuno T (2010) Classification of the genes involved in the two-component system of the moss Physcomitrella patens. Biosci Biotechnol Biochem 74:2542–2545

    PubMed  CAS  Google Scholar 

  78. Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    PubMed  CAS  Google Scholar 

  79. Rameau C (2010) Strigolactones, a novel class of plant hormone controlling shoot branching. C R Biol 333:344–349

    PubMed  CAS  Google Scholar 

  80. Xie X, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    PubMed  CAS  Google Scholar 

  81. Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    PubMed  CAS  Google Scholar 

  82. Watson MA (1981) Chemically mediated interactions among juvenile mosses as possible determinants of their community structure. J Chem Ecol 7:367–376

    Google Scholar 

  83. Schaefer DG, Zryd JP (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127:1430–1438

    PubMed  CAS  Google Scholar 

  84. Ermolayeva E, Sanders D, Johannes E (1997) Ionic mechanism and role of phytochrome-mediated membrane depolarisation in caulonemal side branch initial formation in the moss Physcomitrella patens. Planta 201:109–118

    CAS  Google Scholar 

  85. Mittmann F, Brucker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci USA 101:13939–13944

    PubMed  CAS  Google Scholar 

  86. Uenaka H, Wada M, Kadota A (2005) Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens. Planta 222:623–631

    PubMed  CAS  Google Scholar 

  87. Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14:373–386

    PubMed  CAS  Google Scholar 

  88. Holm K, Kallman T, Gyllenstrand N, Hedman H, Lagercrantz U (2010) Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol 10:109

    PubMed  Google Scholar 

  89. Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    PubMed  CAS  Google Scholar 

  90. Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H (2011) Two novel types of hexokinases in the moss Physcomitrella patens. BMC Plant Biol 11:32

    PubMed  CAS  Google Scholar 

  91. Thelander M, Olsson T, Ronne H (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23:1900–1910

    PubMed  CAS  Google Scholar 

  92. Lee KJ, Sakata Y, Mau SL, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065

    PubMed  CAS  Google Scholar 

  93. Saavedra L, Balbi V, Lerche J, Mikami K, Heilmann I, Sommarin M (2011) PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss Physcomitrella patens. Plant J 67:635–647

    Google Scholar 

  94. Eklund DM, Svensson EM, Kost B (2010) Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth. J Exp Bot 61:1917–1937

    PubMed  CAS  Google Scholar 

  95. Melzer R, Theissen G (2011) MADS and more: transcription factors that shape the plant. Methods Mol Biol 754:3–18

    PubMed  CAS  Google Scholar 

  96. Hamant O, Pautot V (2010) Plant development: a TALE story. C R Biol 333:371–381

    PubMed  CAS  Google Scholar 

  97. Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    PubMed  CAS  Google Scholar 

  98. Singer SD, Ashton NW (2007) Revelation of ancestral roles of KNOX genes by a functional analysis of Physcomitrella homologues. Plant Cell Rep 26:2039–2054

    PubMed  CAS  Google Scholar 

  99. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480

    PubMed  CAS  Google Scholar 

  100. Jang G, Yi K, Pires ND, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–2281

    PubMed  CAS  Google Scholar 

  101. MacAlister CA, Bergmann DC (2011) Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol Dev 13:182–192

    PubMed  CAS  Google Scholar 

  102. Engstrom EM (2011) Phylogenetic analysis of GRAS proteins from moss, lycophyte and vascular plant lineages reveals that GRAS genes arose and underwent substantial diversification in the ancestral lineage common to bryophytes and vascular plants. Plant Signal Behav 6:850–854

    PubMed  CAS  Google Scholar 

  103. Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    PubMed  CAS  Google Scholar 

  104. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 106:16321–16326

    PubMed  CAS  Google Scholar 

  105. Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ (2008) Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet 4:e1000314

    PubMed  Google Scholar 

  106. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    PubMed  CAS  Google Scholar 

  107. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    PubMed  CAS  Google Scholar 

  108. Raghavan V (1989) Developmental biology of fern gametophytes. Cambridge University Press, Cambridge

    Google Scholar 

  109. Ishikawa M, Murata T, Sato Y, Nishiyama T, Hiwatashi Y, Imai A, Kimura M, Sugimoto N, Akita A, Oguri Y, Friedman WE, Hasebe M, Kubo M (2011) Physcomitrella cyclin-dependent kinase a links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell 23:2924–2938

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Bonhomme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bonhomme, S., Nogué, F., Rameau, C., Schaefer, D.G. (2013). Usefulness of Physcomitrella patens for Studying Plant Organogenesis. In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics