Skip to main content

Protein Immunolocalization in Maize Tissues

  • Protocol
  • First Online:
Plant Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 959))

Abstract

The analysis of gene expression at transcript and at protein level is of outstanding importance in plant developmental biology. Proteins can be localized with subcellular resolution by immunolocalization using specific antibodies or generating reporter lines carrying the specific protein fused to a fluorescent protein. Immunolocalization is particularly suitable to confirm the expression pattern of transgenic reporter lines. It also represents a valid alternative, especially for plants such as maize, for which transformation is time consuming and still often unsuccessful, by-passing also some side-effects of fusion proteins. Indeed, the availability of specific antibodies for immunolocalizations and observations of maize tissues under a confocal microscope is a powerful tool for studying protein targeting to different cellular compartments.

In the following chapter we describe the complete procedure for the localization of proteins in different maize tissues both at cellular and sub-cellular level, using polyclonal or monoclonal antibodies. Tissues can be embedded in different substrates, such as paraplast, PEG400 and agarose, depending on the tissue and the desired use: epifluorescence or confocal microscope observations. An additional protocol for the analysis of the nuclear distribution of modified histones in squashed maize root apexes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in arabidopsis. Development 130:4351–4362

    Article  PubMed  CAS  Google Scholar 

  2. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  3. Millar AH, Carrie C, Pogson B, Whelan J (2009) Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 21:1625–1631

    Article  PubMed  CAS  Google Scholar 

  4. Brandizzi F, Fricker M, Hawes C (2002) A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3:520–530

    Article  PubMed  CAS  Google Scholar 

  5. Varotto S, Locatelli S, Canova S, Pipal A, Motto M, Rossi V (2003) Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol 133:606–617

    Article  PubMed  CAS  Google Scholar 

  6. Forestan C, Meda S, Varotto S (2010) ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 152:1373–1390

    Article  PubMed  CAS  Google Scholar 

  7. Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architec­ture determination of maize. Plant Physiol 142:254–264

    Article  PubMed  CAS  Google Scholar 

  8. Rossi V, Locatelli S, Varotto S, Donn G, Pirona R, Henderson DA, Hartings H, Motto M (2007) Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. Plant Cell 19:1145–1162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by PRIN Programmes of MIUR. The author would like to thank T. Pengo for taking care of the plants in the greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Varotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Forestan, C., Carraro, N., Varotto, S. (2013). Protein Immunolocalization in Maize Tissues. In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics