Skip to main content

Analyzing Antigen Recognition by Natural Killer T Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 960))

Abstract

Natural Killer T (NKT) cells are a subset of T lymphocytes that recognize a wide variety of lipid antigens presented by CD1 molecules. NKT cells exhibit rapid activation after recognition of cognate antigens, secrete abundant amounts of T helper (Th) 1, Th2, and Th17 cytokines within hours of activation and shape the immune response through subsequent activation of dendritic, NK, T and B cells. NKT cells therefore play central roles in antimicrobial and anticancer immunity and in modulation of various autoimmune disorders. Consequently, recent research has focused on the discovery of microbial and self-antigens involved in NKT cell activation. In this chapter, we discuss different strategies for studying antigen recognition by NKT cells including CD1d tetramer-based approaches and in vitro assays characterizing NKT cell activation in response to lipid antigen presentation. While toll-like receptor (TLR) agonists and cytokines such as IL-12 are critical for NKT cell activation in vivo, particularly in the context of microbial infection, methods for detection of TLR- and cytokine-dependent NKT cell activation will not be discussed in this section.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94

    Article  CAS  PubMed  Google Scholar 

  2. Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7:929–941

    Article  CAS  PubMed  Google Scholar 

  3. de la Salle H et al (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    Article  PubMed  Google Scholar 

  4. Park SH, Roark JH, Bendelac A (1998) Tissue-specific recognition of mouse CD1 molecules. J Immunol 160:3128–3134

    CAS  PubMed  Google Scholar 

  5. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  CAS  PubMed  Google Scholar 

  6. Zeissig S, Kaser A, Dougan SK, Nieuwenhuis EE, Blumberg RS (2007) Role of NKT cells in the digestive system. III. Role of NKT cells in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 293:G1101–G1105

    Article  CAS  PubMed  Google Scholar 

  7. Michel ML et al (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cardell S et al (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004

    Article  CAS  PubMed  Google Scholar 

  9. Chiu YH et al (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasmar AG et al (2011) CD1b tetramers bind alpha}{beta T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J Exp Med 208(9):1741–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odyniec AN et al (2010) Regulation of CD1 antigen-presenting complex stability. J Biol Chem 285:11937–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dougan SK, Rava P, Hussain MM, Blumberg RS (2007) MTP regulated by an alternate promoter is essential for NKT cell development. J Exp Med 204:533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dougan SK et al (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 202:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaser A et al (2008) Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur J Immunol 38:2351–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeissig S et al (2010) Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J Clin Invest 120:2889–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tupin E, Kronenberg M (2006) Activation of natural killer T cells by glycolipids. Methods Enzymol 417:185–201

    Article  CAS  PubMed  Google Scholar 

  17. Koseki H et al (1990) Homogenous junctional sequence of the V14+ T-cell antigen receptor alpha chain expanded in unprimed mice. Proc Natl Acad Sci U S A 87:5248–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsuda JL et al (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jahng A et al (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Montoya CJ et al (2007) Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  23. McNab FW et al (2005) The influence of CD1d in postselection NKT cell maturation and homeostasis. J Immunol 175:3762–3768

    Article  CAS  PubMed  Google Scholar 

  24. Das R, Sant’Angelo DB, Sant’Angelo DB, Nichols KE (2010) Transcriptional control of invariant NKT cell development. Immunol Rev 238:195–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7:505–518

    Article  CAS  PubMed  Google Scholar 

  26. Lee PT et al (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110:793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kovalovsky D et al (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savage AK et al (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monteiro M et al (2010) Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J Immunol 185:2157–2163

    Article  CAS  PubMed  Google Scholar 

  30. Yu KO et al (2007) Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand alpha-galactosylceramide bound to mouse CD1d. J Immunol Methods 323:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roark JH et al (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160:3121–3127

    CAS  PubMed  Google Scholar 

  32. Dougan SK, Kaser A, Blumberg RS (2007) CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 314:113–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was supported by NIH grants DK51362, DK44319, DK53056, DK88199, the Harvard Digestive Diseases Center (DK034856) (to R.S.B.); the Deutsche Forschungsgemeinschaft (Ze 814/1-1, Ze 814/4-1), and the FP7-PEOPLE program of the European Commission (Marie Curie International Reintegration Grant 256363) (to S.Z.); the Deutsche Forschungsgemeinschaft (OL 324/1-1) (to T.O.) E.M. was financed through the Norwegian PSC research center, Caroline Musæus Aarsvolds fund, and the Unger‐Vetlesen Medical Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zeissig, S., Olszak, T., Melum, E., Blumberg, R.S. (2013). Analyzing Antigen Recognition by Natural Killer T Cells. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology™, vol 960. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-218-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-218-6_41

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-217-9

  • Online ISBN: 978-1-62703-218-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics