Transgenic Cotton: From Biotransformation Methods to Agricultural Application

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 958)

Abstract

Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

References

  1. 1.
    Stephens SG, Mosley ME (1974) Early domesticated cottons from archaeological sites in central coastal. Peru Am Antiquity 39:109–122CrossRefGoogle Scholar
  2. 2.
    Zhang BH, Feng R (2000) Cotton resistance to insect and pest-resistant cotton. Chinese Agricultural Science and Technology Press, BeijingGoogle Scholar
  3. 3.
    IAC (1996) Cotton: review of world situation. Monogram by International Advisory Committee, Washington, DCGoogle Scholar
  4. 4.
    Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116CrossRefGoogle Scholar
  5. 5.
    Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5:263–266Google Scholar
  6. 6.
    Divya K, Anuradha TS, Jami SK, Kirti PB (2008) Efficient regeneration from hypocotyl explants in three cotton cultivars. Biologia Plantarum 52:201–208CrossRefGoogle Scholar
  7. 7.
    Han GY, Wang XF, Zhang GY, Ma ZY (2009) Somatic embryogenesis and plant regeneration of recalcitrant cottons (Gossypium hirsutum). Afr J Biotechnol 8:432–437Google Scholar
  8. 8.
    Hussain SS, Rao AQ, Husnain T, Riazuddin S (2009) Cotton somatic embryo morphology affects its conversion to plant. Biologia Plantarum 53:307–311CrossRefGoogle Scholar
  9. 9.
    Khan T, Singh AK, Pant RC (2006) Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton (Gossypium spp.). Vitro Cell Develop Biol Plant 42:498–501CrossRefGoogle Scholar
  10. 10.
    Kouakou TH, Waffo-Teguo P, Kouadio YJ, Valls J, Richard T, Decendit A, Merillon J-M (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 90:25–29CrossRefGoogle Scholar
  11. 11.
    Wang J, Sun Y, Yan S, Daud MK, Zhu S (2008) High frequency plant regeneration from protoplasts in cotton via somatic embryogenesis. Biol Plantarum 52:616–620CrossRefGoogle Scholar
  12. 12.
    Zhang B, Wang Q, Liu F, Wang K, Frazier TP (2009) Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Plant Omics 2:259–268Google Scholar
  13. 13.
    Aydin Y, Talas-Ogras T, Ipekci-Altas Z, Gozukirmizi N (2006) Effects of brassinosteroid on cotton regeneration via somatic embryogenesis. Biologia 61:289–293CrossRefGoogle Scholar
  14. 14.
    Ikram-ul H, Zafar Y (2004) High frequency of callus induction, its proliferation and somatic embryogenesis in cotton (Gossypium hirsutum L.). J Plant Biotechnol 6:55–61Google Scholar
  15. 15.
    Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa) – a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult 73:21–35CrossRefGoogle Scholar
  16. 16.
    Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha A, Majeed A, Shahid AA, Saleem Z, Husnain T, Riazuddin S (2006) Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). J Zhejiang Univ Sci 7:291–298CrossRefGoogle Scholar
  17. 17.
    Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and pee dee cotton lines. Crop Sci 44:2199–2205CrossRefGoogle Scholar
  18. 18.
    Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25:289–296PubMedCrossRefGoogle Scholar
  19. 19.
    Sun YQ, Zhang XL, Huang C, Nie YC, Guo XP (2005) Factors influencing in vitro regeneration from protoplasts of wild cotton (G-klotzschianum A) and RAPD analysis of regenerated plantlets. Plant Growth Regul 46:79–86CrossRefGoogle Scholar
  20. 20.
    Wu JH, Zhang XL, Nie YC, Jin SX, Liang SG (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). Vitro Cell Develop Biol Plant 40:371–375CrossRefGoogle Scholar
  21. 21.
    Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639PubMedGoogle Scholar
  22. 22.
    Sakhanokho HF, Zipf A, Raiasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and pima (Gossypium barbadense L.) cottons. Crop Sci 41:1235–1240CrossRefGoogle Scholar
  23. 23.
    Zhang BH, Feng R, Liu F, Wang QL (2001) High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot Bull Acad Sin 42:9–16Google Scholar
  24. 24.
    Zhang BH, Feng R, Liu F, Yao CB (1999) Direct induction of cotton somatic embryogenesis. Chinese Sci Bull 44:766–767CrossRefGoogle Scholar
  25. 25.
    Zhang BH, Feng R, Liu F, Zhou DY, Wang QL (2001) Direct somatic embryogenesis and plant regeneration from cotton (Gossypium hirsutum L.) explants. Israel J Plant Sci 49:193–196CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Benito ME, Carvalho JMFC, Perez C (1997) Cotton (Gossypium hirsutum L.) somatic embryogenesis: a comparative study between two cultivars. Phytomorphology 47:375–382Google Scholar
  27. 27.
    Hemphill JK, Maier CGA, Chapman KD (1998) Rapid in-vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep 17:273–278CrossRefGoogle Scholar
  28. 28.
    Rajasegar G, Rangasamy SRS, Venkatachalam P, Rao GR (1996) Callus induction, somatic embryoid formation and plant regeneration in cotton (Gossypium hirsutum L.). J Phytol Res 9:145–147Google Scholar
  29. 29.
    Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant-regeneration in cotton (Gossypium-hirsutum-L). Plant Cell Rep 6:231–234CrossRefGoogle Scholar
  30. 30.
    Trolinder NL, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium). 1. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Cult 12:31–42CrossRefGoogle Scholar
  31. 31.
    Trolinder NL, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium). 2. Requirements for embryo development and plant-regeneration. Plant Cell Tissue Organ Cult 12:43–53CrossRefGoogle Scholar
  32. 32.
    Voo KS, Rugh CL, Kamalay JC (1991) Indirect somatic embryogenesis and plant recovery from cotton Gossypium-hirsutum L. Vitro Cell Develop Biol Plant 27P:117–124CrossRefGoogle Scholar
  33. 33.
    Zhang BH, Feng R, Li XH, Li FL (1996) Anther culture and plant regeneration of cotton (Gossypium klotzschianum Anderss). Chinese Sci Bull 41:145–148Google Scholar
  34. 34.
    Gelvin SB (2003) Agobacterium-mediated plant transformation: the biology behind the “gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedCrossRefGoogle Scholar
  35. 35.
    Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116CrossRefGoogle Scholar
  36. 36.
    Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5:263–266Google Scholar
  37. 37.
    Asad S, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169PubMedCrossRefGoogle Scholar
  38. 38.
    Chen TZ, Wu SJ, Zhao J, Guo WZ, Zhang TZ (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555CrossRefGoogle Scholar
  39. 39.
    Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296PubMedCrossRefGoogle Scholar
  40. 40.
    Katageri IS, Vamadevaiah HM, Udikeri SS, Khadi BM, Kumar PA (2007) Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci 93:1843–1847Google Scholar
  41. 41.
    Kim HJ, Murai N, Fang DD, Triplett BA (2009) Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci 180:323–332CrossRefGoogle Scholar
  42. 42.
    Li FF, Wu SJ, Chen TZ, Zhang J, Wang HH, Guo WZ, Zhang TZ (2009) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue Organ Cult 97:225–235CrossRefGoogle Scholar
  43. 43.
    Liu JF, Zhao CY, Ma J, Zhang GY, Li MG, Yan GJ, Wang XF, Ma ZY (2009) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) with a fungal phytase gene improves phosphorus acquisition. Euphytica 181:31–40CrossRefGoogle Scholar
  44. 44.
    Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557CrossRefGoogle Scholar
  45. 45.
    Wu JH, Luo XL, Zhang XR, Shi YJ, Tian YC (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A*accumulating in chloroplasts. Transgenic Res 20:963–973PubMedCrossRefGoogle Scholar
  46. 46.
    Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang YJ, Ding YZ, Guo WZ, Zhang TZ (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185CrossRefGoogle Scholar
  47. 47.
    Zhang J, Cai L, Cheng JQ, Mao HZ, Fan XP, Meng ZH, Chan KM, Zhang HJ, Qi JF, Ji LH, Hong Y (2008) Transgene integration and organization in Cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306PubMedCrossRefGoogle Scholar
  48. 48.
    Ikram Ul H (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Rep 22:279–288CrossRefGoogle Scholar
  49. 49.
    Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470PubMedCrossRefGoogle Scholar
  50. 50.
    Satyavathi VV, Prasad V, Lakshmi BG, Sita GL (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223CrossRefGoogle Scholar
  51. 51.
    Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52CrossRefGoogle Scholar
  52. 52.
    Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult 83:83–96CrossRefGoogle Scholar
  53. 53.
    Yuceer SU, Koc NK (2006) Agrobacterium-mediated transformation and regeneration of cotton plants. Russian J Plant Physiol 53:413–417CrossRefGoogle Scholar
  54. 54.
    Zhao FY, Li YF, Xu PL (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu SW, Gao P, Sun JS, Wang HH, Luo XM, Jiao MY, Wang ZY, Xia GX (2006) Genetic transformation of green-colored cotton. Vitro Cell Dev Biol Plant 42:439–444CrossRefGoogle Scholar
  56. 56.
    Jin SX, Zhang XL, Liang SG, Nie YC, Guo XP, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:229–237CrossRefGoogle Scholar
  57. 57.
    Wu S-J, Wang H-H, Li F-F, Chen T-Z, Zhang J, Jiang Y-J, Ding Y, Guo W-Z, Zhang T-Z (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185CrossRefGoogle Scholar
  58. 58.
    Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction – a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743CrossRefGoogle Scholar
  59. 59.
    Lai E-M, Shih H-W, Wen S-R, Cheng M-W, Hwang H-H, Chiu S-H (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136PubMedCrossRefGoogle Scholar
  60. 60.
    Nair GR, Lai X, Wise AA, Rhee BW, Jacobs M, Binns AN (2011) The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 193:1436–1448PubMedCrossRefGoogle Scholar
  61. 61.
    Stachel SE, Messens E, Vanmontagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  62. 62.
    Wu J, Zhang X, Nie Y, Luo X (2005) High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146CrossRefGoogle Scholar
  63. 63.
    Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256CrossRefGoogle Scholar
  64. 64.
    McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio-Technology 11:596–598Google Scholar
  65. 65.
    Chlan CA, Lin JM, Cary JW, Cleveland TE (1995) A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Mol Biol Rep 13:31–37CrossRefGoogle Scholar
  66. 66.
    Liu JF, Wang XF, Li QL, Li X, Zhang GY, Li MG, Ma ZY (2011) Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell Tissue Organ Cult 106:207–214CrossRefGoogle Scholar
  67. 67.
    Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418PubMedCrossRefGoogle Scholar
  68. 68.
    Banerjee AK, Agrawal DC, Nalawade SM, Krishnamurthy KV (2002) Transient expression of beta-glucuronidase in embryo axes of cotton by Agrobacterium and particle bombardment methods. Biologia Plantarum 45:359–365CrossRefGoogle Scholar
  69. 69.
    Dangat SS, Rajput SG, Wable KJ, Jaybhaye AA, Patil VU (2007) A biolistic approach for transformation and expression of cry 1Ac gene in shoot tips of cotton (Gossypium hirsutum). Res J Biotechnol 2:43–46Google Scholar
  70. 70.
    Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545CrossRefGoogle Scholar
  71. 71.
    Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589CrossRefGoogle Scholar
  72. 72.
    Zhou G, Weng J, Zheng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481PubMedCrossRefGoogle Scholar
  73. 73.
    Huang GC, Dong YM, Sun JS (1999) Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as a reporter. Chinese Sci Bull 44:698–701CrossRefGoogle Scholar
  74. 74.
    Ni WC, Guo SD, Jia SR (2000) Cotton transformation with the pollen tube pathway. Rev China Agricult Sci Technol 2:27–32Google Scholar
  75. 75.
    Yang A, Su Q, An L, Liu J, Wu W, Qiu Z (2009) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 139:1–5PubMedCrossRefGoogle Scholar
  76. 76.
    Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A (2011) Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnol Lett 33:55–61PubMedCrossRefGoogle Scholar
  77. 77.
    Hu CY, Wang LZ (1999) In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. Vitro Cell Dev Biol Plant 35:417–420CrossRefGoogle Scholar
  78. 78.
    Shou HX, Palmer RG, Wang K (2002) Irreproducibility of the soybean pollen-tube pathway transformation procedure. Plant Mol Biol Rep 20:325–334CrossRefGoogle Scholar
  79. 79.
    Yang S, Li G, Li M, Wang J (2011) Transgenic soybean with low phytate content constructed by Agrobacterium transformation and pollen-tube pathway. Euphytica 177:375–382CrossRefGoogle Scholar
  80. 80.
    Martin N, Forgeois P, Picard E (1992) Investigations on transforming Triticum aestivum via pollen tube pathway. Agronomie 12:537–544CrossRefGoogle Scholar
  81. 81.
    Qiu Z, Su Q, An L-J (2008) Application of FITC tracing in the optimization of wheat transformation via pollen-tube pathway. Xibei Zhiwu Xuebao 28:611–616Google Scholar
  82. 82.
    Yin J, Yu G-R, Ren J-P, Li L, Song L (2004) Transforming anti-TrxS gene into wheat by means of pollen tube pathway and ovary injection. Xibei Zhiwu Xuebao 24:776–780Google Scholar
  83. 83.
    Zeng JZ, Wang DJ, Wu YQ, Zhang J, Zhou WJ, Zhu XP, Xu NZ (1994) Transgenic wheat obtained with pollen tube pathway method. Sci China Ser B Chem 37:319–325Google Scholar
  84. 84.
    Wei J-Y, Liu D-B, Chen Y-Y, Cai Q-F, Zhou P (2008) Transformation of PRSV-CP dsRNA gene into papaya by pollen-tube pathway technique. Xibei Zhiwu Xuebao 28:2159–2163Google Scholar
  85. 85.
    Zhang YS, Yin XY, Yang AF, Li GS, Zhang JR (2005) Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22CrossRefGoogle Scholar
  86. 86.
    Zhang BH, Pan XP, Wang QL (2005) Development and commercial use of Bt cotton. Physiol Mol Biol Plants 11:51–64Google Scholar
  87. 87.
    Zhang BH, Liu F, Yao CB, Wang KB (2000) Recent progress in cotton biotechnology and genetic engineering in China. Curr Sci 79:37–44Google Scholar
  88. 88.
    Zhang BH, Feng R (2000) Cotton-resistance to pests and transgenic pest-resistant cotton. China Agricultural Science and Technology, BeijingGoogle Scholar
  89. 89.
    Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Contr 26:325–332CrossRefGoogle Scholar
  90. 90.
    Mellet MA, Schoeman AS, Broodryk SW, Hofs JL (2004) Bollworm (Helicoverpa armigera (Hubner), Lepidoptera: Noctuidae) occurrences in Bt- and non-Bt-cotton fields, Marble Hall, Mpumalanga, South Africa. African Entomol 12:107–115Google Scholar
  91. 91.
    Li YX, Greenberg SM, Liu TX (2006) Effects of Bt cotton expressing Cry1Ac and Cry2Ab and non-Bt cotton on behavior, survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Crop Prot 25:940–948CrossRefGoogle Scholar
  92. 92.
    Carriere Y, Ellers-Kirk C, Biggs RW, Sims MA, Dennehy TJ, Tabashnik BE (2007) Effects of resistance to Bt cotton on diapause in the pink bollworm, Pectinophora gossypiella. J Insect Sci 7:1–12PubMedCrossRefGoogle Scholar
  93. 93.
    Ramasundaram P, Vennila S, Ingle RK (2007) Bt cotton performance and constraints in central India. Outlook Agricult 36:175–180CrossRefGoogle Scholar
  94. 94.
    Zhao J, Lu M, Fan X, Xie F (1998) Survival and growth of different instar larvae of Helicoverpa armigera (Hubner) on transgenic Bt cotton. Acta Entomol Sin 41:354–358Google Scholar
  95. 95.
    Adamczyk JJ, Gore J (2003) Varying levels of Cry1Ac in transgenic Bacillus thuringiensis Berliner (Bt) cotton leaf bioassays. J Agricult Urban Entomol 20:49–53Google Scholar
  96. 96.
    Parker CD, Mascarenhas VJ, Luttrell RG, Knighten K (2000) Survival rates of tobacco budworm (Lepidoptera: Noctuidae) larvae exposed to transgenic cottons expressing insecticidal protein of Bacillus thuringiensis Berliner. J Entomol Sci 35:105–117Google Scholar
  97. 97.
    Gore J, Leonard BR, Church GE, Cook DR (2002) Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. J Econ Entomol 95:763–769PubMedCrossRefGoogle Scholar
  98. 98.
    Gore J, Leonard BR, Church GE, Russell JS, Hall TS (2000) Cotton boll abscission and yield losses associated with first-instar bollworm (Lepidoptera: Noctuidae) injury to nontransgenic and transgenic Bt cotton. J Econ Entomol 93:690–696PubMedCrossRefGoogle Scholar
  99. 99.
    Buchanan GA (1992) Trends in weed control methods. In: Weeds of cotton: characterization and control. Cotton FoundationGoogle Scholar
  100. 100.
    Steinrucken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212PubMedCrossRefGoogle Scholar
  101. 101.
    Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan GJ, Padgette SR, Fuchs RL (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966CrossRefGoogle Scholar
  102. 102.
    Riar DS, Norsworthy JK, Griffith GM (2011) Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol 25:526–534CrossRefGoogle Scholar
  103. 103.
    Pasapula V, Shen GX, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen JA, Qiu XY, Zhu LF, Zhang XL, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H(+)-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang KW, Guo N, Lian LJ, Wang J, Lv SL, Zhang JR (2011) Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica 181:1–16CrossRefGoogle Scholar
  105. 105.
    Zhu CF, Wang YX, Li YB, Bhatti KH, Tian YC, Wu JH (2011) Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem 49:1264–1271PubMedCrossRefGoogle Scholar
  106. 106.
    Lv S, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H(+)-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164PubMedCrossRefGoogle Scholar
  107. 107.
    Light GG, Mahan JR, Roxas VP, Allen RD (2005) Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222:346–354PubMedCrossRefGoogle Scholar
  108. 108.
    Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX (2009) Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J 7:13–23PubMedCrossRefGoogle Scholar
  109. 109.
    FeiFei L, ShenJie W, Fenni L, TianZi C, Ming J, HaiHai W, YanJie J, Jie Z, WangZhen G, TianZhen Z (2009) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chinese Sci Bull 54:1210–1216CrossRefGoogle Scholar
  110. 110.
    Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458PubMedCrossRefGoogle Scholar
  111. 111.
    Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205PubMedCrossRefGoogle Scholar
  112. 112.
    McClintock JT, Schaffer CR, Sjoblad RD (1995) A comparative review of the mammalian toxicity of bacillus thuringiensis-based pesticides. Pest Sci 45:95–105CrossRefGoogle Scholar
  113. 113.
    Gao YL, Wu KM, Gould F (2009) Frequency of Bt resistance alleles in H-armigera during 2006-2008 in Northern China. Environ Entomol 38:1336–1342PubMedCrossRefGoogle Scholar
  114. 114.
    Tabashnik BE, Van Rensburg JBJ, Carriere Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025PubMedCrossRefGoogle Scholar
  115. 115.
    Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038PubMedCrossRefGoogle Scholar
  116. 116.
    Carriere Y, Ellers-Kirk C, Hartfield K, Larocque G, Degain B, Dutilleul P, Dennehy TJ, Marsh SE, Crowder DW, Li XC, Ellsworth PC, Naranjo SE, Palumbo JC, Fournier A, Antilla L, Tabashnik BE (2012) Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance. Proc Natl Acad Sci USA 109:775–780PubMedCrossRefGoogle Scholar
  117. 117.
    Frisvold GB, Reeves JM (2008) The costs and benefits of refuge requirements: the case of Bt cotton. Ecol Econ 65:87–97CrossRefGoogle Scholar
  118. 118.
    Huang FN, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16CrossRefGoogle Scholar
  119. 119.
    Zhao JZ, Cao J, Li YX, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497PubMedCrossRefGoogle Scholar
  120. 120.
    Chevre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389:924CrossRefGoogle Scholar
  121. 121.
    Snow AA (2002) Transgenic crops – why gene flow matters. Nat Biotechnol 20:542–542PubMedCrossRefGoogle Scholar
  122. 122.
    Heuberger S, Ellers-Kirk C, Tabashnik BE, Carriere Y (2011) Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS One 5Google Scholar
  123. 123.
    Zhang BH, Pan XP, Guo TL, Wang QL, Anderson TA (2005) Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Mol Biotechnol 31:11–20PubMedCrossRefGoogle Scholar
  124. 124.
    Llewellyn D, Fitt G (1996) Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Mol Breed 2:157–166CrossRefGoogle Scholar
  125. 125.
    Umbeck PF, Barton KA, Nordheim EV, McCarty JC, Parrott WL, Jenkins JN (1991) Degree of pollen dispersal by insect from a field test of genetically engineered cotton. J Econ Entomol 84:1943–1950Google Scholar
  126. 126.
    Wegier A, Pineyro-Nelson A, Alarcon J, Galvez-Mariscal A, Alvarez-Buylla ER, Pinero D (2011) Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Mol Ecol 20:4182–4194PubMedCrossRefGoogle Scholar
  127. 127.
    Free JB (1970) Insect pollination of crops. In: Insect pollination of crops. p 544Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations