Rice Protocols pp 131-149 | Cite as

Artificial MicroRNAs for Specific Gene Silencing in Rice

  • Norman WarthmannEmail author
  • Stephan Ossowski
  • Rebecca Schwab
  • Detlef Weigel
Part of the Methods in Molecular Biology book series (MIMB, volume 956)


Artificial microRNAs (amiRNAs) have been shown to facilitate efficient gene silencing with high specificity to the intended target gene(s). For the plant breeder, gene silencing by artificial miRNAs will certainly accelerate gene discovery, because it allows targeting of all genes in a mapping interval, independent of the genetic background. In addition, beneficial knockout phenotypes can easily be transferred between varieties and across incompatibility barriers. This chapter describes the generation and application of amiRNAs as a gene silencing tool in rice.

Key words

Gene silencing miRNA Hairpin Loss-of-function Phenotypic complementation 



We thank Hao Chen and Philippe Hervé, who generated and evaluated the first transgenic rice plants (Nipponbare and IR64) carrying aMIRNA transgenes at the International Rice Research Institute in the Philippines (IRRI). Markus Riester contributed to earlier versions of WMD and Joffrey Fitz codeveloped AmiRNA/WMD3; we are further thankful to everybody who contributed by sharing technical expertise and discussion, namely, Alexis Maizel, Javier Palatnik, Heike Wollmann, and Wolfgang Busch. Work on small RNAs in the Weigel laboratory is supported by European Community FP6 IP SIROCCO (contract LSHG-CT-2006-037900) and by the Max Planck Society.


  1. 1.
    Krishnan A, Guiderdoni E, An G et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170PubMedCrossRefGoogle Scholar
  2. 2.
    Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896PubMedCrossRefGoogle Scholar
  3. 3.
    Tang G, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369CrossRefGoogle Scholar
  4. 4.
    Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  5. 5.
    Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCrossRefGoogle Scholar
  6. 6.
    Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829PubMedCrossRefGoogle Scholar
  7. 7.
    Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  8. 8.
    Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  9. 9.
    Ossowski O, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690PubMedCrossRefGoogle Scholar
  10. 10.
    Vaucheret H (2005) MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005:pe43PubMedCrossRefGoogle Scholar
  11. 11.
    Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151PubMedCrossRefGoogle Scholar
  12. 12.
    Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428PubMedCrossRefGoogle Scholar
  13. 13.
    Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242PubMedCrossRefGoogle Scholar
  14. 14.
    Qu J, Ye J, Fang R (2007) Artificial miRNA-mediated virus resistance in plants. J Virol 81:6690–6699PubMedCrossRefGoogle Scholar
  15. 15.
    Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693PubMedCrossRefGoogle Scholar
  16. 16.
    Chen S, Songkumarn P, Liu J, Wang G (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121PubMedCrossRefGoogle Scholar
  17. 17.
    Michniewicz M, Zago MK, Abas L et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedCrossRefGoogle Scholar
  18. 18.
    Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J Discrete Algorithm 2:53–86CrossRefGoogle Scholar
  19. 19.
    Schneeberger K, Hagmann J, Ossowski S et al (2009) Simultaneous alignment of short reads against multiple genomes. Genome Biol 10:R98PubMedCrossRefGoogle Scholar
  20. 20.
    Molnar A, Bassett A, Thuenemann E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174PubMedCrossRefGoogle Scholar
  21. 21.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111PubMedCrossRefGoogle Scholar
  22. 22.
    Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112PubMedCrossRefGoogle Scholar
  23. 23.
    Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182PubMedCrossRefGoogle Scholar
  24. 24.
    Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2006) RNA-directed DNA methylation and pol IVb in Arabidopsis. Cold Spring Harb Symp Quant Biol 71:449–459PubMedCrossRefGoogle Scholar
  25. 25.
    Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedCrossRefGoogle Scholar
  26. 26.
    Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  27. 27.
    Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Norman Warthmann
    • 1
    Email author
  • Stephan Ossowski
    • 1
  • Rebecca Schwab
    • 1
  • Detlef Weigel
    • 1
  1. 1.Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations