Skip to main content

Structure–Function Insights of Membrane and Soluble Proteins Revealed by Electron Crystallography

  • Protocol
  • First Online:
Electron Crystallography of Soluble and Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

  • 3051 Accesses

Abstract

Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  PubMed  CAS  Google Scholar 

  2. Unwin PNT, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440

    Article  PubMed  CAS  Google Scholar 

  3. Henderson R, Baldwin JM, Downing KH, Lepault J, Zemlin F (1986) Structure of purple membrane from halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19:147–178

    Article  CAS  Google Scholar 

  4. Kunji ER, von Gronau S, Oesterhelt D, Henderson R (2000) The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: a new unbending procedure for two-dimensional crystals by using a global reference structure. Proc Natl Acad Sci USA 97:4637–4642

    Article  PubMed  CAS  Google Scholar 

  5. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  PubMed  CAS  Google Scholar 

  6. Hirai T, Subramaniam S (2009) Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses. PLoS One 4:5769

    Article  Google Scholar 

  7. Wang DN, Kühlbrandt W (1991) High-resolution electron crystallography of light-harvesting chlorophyll a/b-protein complex in three different media. J Mol Biol 217:691–699

    Article  PubMed  CAS  Google Scholar 

  8. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  9. Kühlbrandt W, Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350:130–134

    Article  PubMed  Google Scholar 

  10. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  PubMed  CAS  Google Scholar 

  11. Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305:866–899

    Article  PubMed  CAS  Google Scholar 

  12. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  13. Ren G, Reddy VS, Cheng A, Melnyk P, Mitra AK (2001) Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc Natl Acad Sci U S A 98:1398–1403

    Article  PubMed  CAS  Google Scholar 

  14. Gonen T, Sliz P, Kistler J, Cheng YF, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  PubMed  CAS  Google Scholar 

  15. Gonen T, Cheng YF, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional aqpo crystals. Nature 438: 633–638

    Article  PubMed  CAS  Google Scholar 

  16. Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-angstrom resolution. Proc Natl Acad Sci U S A 101: 14045–14050

    Article  PubMed  CAS  Google Scholar 

  17. Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K, Kimura K, Mizoguchi A, Fujiyoshi Y (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628–639

    Article  PubMed  CAS  Google Scholar 

  18. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  PubMed  CAS  Google Scholar 

  19. Unwin N, Miyazawa A, Li J, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the a subunits. J Mol Biol 319:1165–1176

    Article  PubMed  CAS  Google Scholar 

  20. Skriver E, Maunsbach AB, Jørgensen PL (1981) Formation of two-dimensional crystals in pure membrane-bound Na+, K+−ATPase. FEBS Lett 131:219–222

    Article  PubMed  CAS  Google Scholar 

  21. Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392:835–839

    Article  PubMed  CAS  Google Scholar 

  22. Rice WJ, Young HS, Martin DW, Sachs JR, Stokes DL (2001) Structure of Na+, K+−ATPase at 11-A resolution: comparison with Ca2+−ATPase in E1 and E2 states. Biophys J 80:2187–2197

    Article  PubMed  CAS  Google Scholar 

  23. Stokes DL, Pomfret AJ, Rice WJ, Glaves JP, Young HS (2006) Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals. Biophys J 90:4213–4223

    Article  PubMed  CAS  Google Scholar 

  24. Abe K, Tani K, Nishizawa T, Fujiyoshi Y (2009) Inter-subunit interaction of gastric H+, K+−ATPase prevents reverse reaction of the transport cycle. EMBO J 28:1637–1643

    Article  PubMed  CAS  Google Scholar 

  25. Abe K, Tani K, Fujiyoshi Y (2010) Structural and functional characterization of H+, K+−ATPase with bound fluorinated phosphate analogs. J Struct Biol 170:60–68

    Article  PubMed  CAS  Google Scholar 

  26. Abe K, Tani K, Fujiyoshi Y (2011) Conformational rearrangement of gastric H(+), K(+)-ATPase induced by an acid suppressant. Nat Commun 2:155

    Article  PubMed  Google Scholar 

  27. Schmidt-Krey I (2007) Electron crystallography of membrane proteins: two-dimensional crystallization and screening by electron microscopy. Methods 41:417–426

    Article  PubMed  CAS  Google Scholar 

  28. Kim LY, Johnson MC, Schmidt-Krey I (2011) Cryo-EM in the study of membrane transport proteins. Compr Physiol 2:283–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingeborg Schmidt-Krey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dreaden, T.M., Devarajan, B., Barry, B.A., Schmidt-Krey, I. (2013). Structure–Function Insights of Membrane and Soluble Proteins Revealed by Electron Crystallography. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics