Skip to main content

Single Particle Electron Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

Abstract

Single particle electron microscopy is a versatile technique for the structural analysis of protein complexes in near-native conditions. While tremendous progress has been made during the past few decades in techniques for specimen preparation, imaging, and image analysis, the field is still in development. In the context of this volume on electron crystallography, the following chapter gives practical guidelines on how to begin single particle EM studies, including preparing specimens, selecting imaging conditions, and choosing which of the many approaches to image analysis are appropriate for a specific sample.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463:379–383

    Article  PubMed  CAS  Google Scholar 

  2. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105:1867–1872

    Article  PubMed  CAS  Google Scholar 

  3. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH (2010) 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–482

    Article  PubMed  CAS  Google Scholar 

  4. Frank J (2009) Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Q Rev Biophys 42:139–158

    Article  PubMed  CAS  Google Scholar 

  5. Henderson R (1992) Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy 46:1–18

    Article  PubMed  CAS  Google Scholar 

  6. Glaeser RM, McMullan G, Faruqi AR, Henderson R (2010) Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion. Ultramicroscopy 111:90–100

    Article  PubMed  Google Scholar 

  7. Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  PubMed  CAS  Google Scholar 

  8. Baird NJ, Ludtke SJ, Khant H, Chiu W, Pan T, Sosnick TR (2010) Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy. J Am Chem Soc 132:16352–16353

    Article  PubMed  CAS  Google Scholar 

  9. Jiang W, Baker ML, Jakana J, Weigele PR, King J, Chiu W (2008) Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1134

    Article  PubMed  CAS  Google Scholar 

  10. Elad N, Clare DK, Saibil HR, Orlova EV (2008) Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J Struct Biol 162:108–120

    Article  PubMed  CAS  Google Scholar 

  11. Zhang W, Kimmel M, Spahn CM, Penczek PA (2008) Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–1776

    Article  PubMed  CAS  Google Scholar 

  12. Julian P, Konevega AL, Scheres SH, Lazaro M, Gil D, Wintermeyer W, Rodnina MV, Valle M (2008) Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc Natl Acad Sci USA 105:16924–16927

    Article  PubMed  CAS  Google Scholar 

  13. Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009) Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457:107–110

    Article  PubMed  CAS  Google Scholar 

  14. Elmlund H, Baraznenok V, Linder T, Szilagyi Z, Rofougaran R, Hofer A, Hebert H, Lindahl M, Gustafsson CM (2009) Cryo-EM reveals promoter DNA binding and conformational flexibility of the general transcription factor TFIID. Structure 17:1442–1452

    Article  PubMed  CAS  Google Scholar 

  15. Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Luhrmann R, Stark H (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55

    Article  PubMed  CAS  Google Scholar 

  16. Cheng Y, Wolf E, Larvie M, Zak O, Aisen P, Grigorieff N, Harrison SC, Walz T (2006) Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J Mol Biol 355:1048–1065

    Article  PubMed  CAS  Google Scholar 

  17. Brignole EJ, Smith S, Asturias FJ (2009) Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat Struct Mol Biol 16:190–197

    Article  PubMed  CAS  Google Scholar 

  18. Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  PubMed  CAS  Google Scholar 

  19. Adrian M, Dubochet J, Fuller SD, Harris JR (1998) Cryo-negative staining. Micron 29:145–160

    Article  PubMed  CAS  Google Scholar 

  20. Rubinstein JL (2007) Structural analysis of membrane protein complexes by single particle electron microscopy. Methods 41:409–416

    Article  PubMed  CAS  Google Scholar 

  21. Mishima O, Calvert LD, Whalley E (1985) An apparent first-order transition between two amorphous phases of ice induced by pressure. Nature 314:76–78

    Article  CAS  Google Scholar 

  22. Frank J, Penczek P, Agrawal RK, Grassucci RA, Heagle AB (2000) Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol 317:276–291

    Article  PubMed  CAS  Google Scholar 

  23. Harris WJ (1962) Holey films for electron microscopy. Nature 196:499–500

    Article  PubMed  CAS  Google Scholar 

  24. Quispe J, Damiano J, Mick SE, Nackashi DP, Fellmann D, Ajero TG, Carragher B, Potter CS (2007) An improved holey carbon film for cryo-electron microscopy. Microsc Microanal 13:365–371

    Article  PubMed  CAS  Google Scholar 

  25. Stagg SM, Lander GC, Pulokas J, Fellmann D, Cheng A, Quispe JD, Mallick SP, Avila RM, Carragher B, Potter CS (2006) Automated cryoEM data acquisition and analysis of 284742 particles of GroEL. J Struct Biol 155:470–481

    Article  PubMed  CAS  Google Scholar 

  26. Fujii T, Kato T, Namba K (2009) Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure 17:1485–1493

    Article  PubMed  CAS  Google Scholar 

  27. Lau WC, Rubinstein JL (2010) Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Proc Natl Acad Sci USA 107:1367–1372

    Article  PubMed  CAS  Google Scholar 

  28. Lau WC, Baker LA, Rubinstein JL (2008) Cryo-EM structure of the yeast ATP synthase. J Mol Biol 382:1256–1264

    Article  PubMed  CAS  Google Scholar 

  29. Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22:6182–6192

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt-Krey I, Rubinstein JL (2011) Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 42:107–116

    Article  PubMed  CAS  Google Scholar 

  31. Spence JCH (2008) High-resolution electron microscopy, 3rd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  32. Langmore JP, Smith MF (1992) Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46:349–373

    Article  PubMed  CAS  Google Scholar 

  33. Bammes BE, Jakana J, Schmid MF, Chiu W (2010) Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169:331–341

    Article  PubMed  CAS  Google Scholar 

  34. Comolli LR, Downing KH (2005) Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J Struct Biol 152:149–156

    Article  PubMed  CAS  Google Scholar 

  35. Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, Reilein A (2000) Leginon: an automated system for acquisition of images from vitreous ice specimens. J Struct Biol 132:33–45

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, Nakamura N, Shimizu Y, Liang N, Liu X, Jakana J, Marsh MP, Booth CR, Shinkawa T, Nakata M, Chiu W (2009) JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J Struct Biol 165:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Booth CR, Jakana J, Chiu W (2006) Assessing the capabilities of a 4kx4k CCD camera for electron cryo-microscopy at 300 kV. J Struct Biol 156:556–563

    Article  PubMed  CAS  Google Scholar 

  38. Sander B, Golas MM, Stark H (2005) Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy. J Struct Biol 151:92–105

    Article  PubMed  CAS  Google Scholar 

  39. Baker LA, Smith EA, Bueler SA, Rubinstein JL (2010) The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals. J Struct Biol 169:431–437

    Article  PubMed  CAS  Google Scholar 

  40. Henderson R, Cattermole D, McMullan G, Scotcher S, Fordham M, Amos WB, Faruqi AR (2007) Digitisation of electron microscope films: six useful tests applied to three film scanners. Ultramicroscopy 107:73–80

    Article  PubMed  CAS  Google Scholar 

  41. Faruqi AR, Henderson R (2007) Electronic detectors for electron microscopy. Curr Opin Struct Biol 17:549–555

    Article  PubMed  CAS  Google Scholar 

  42. Yonekura K, Braunfeld MB, Maki-Yonekura S, Agard DA (2006) Electron energy filtering significantly improves amplitude contrast of frozen-hydrated protein at 300 kV. J Struct Biol 156:524–536

    Article  PubMed  CAS  Google Scholar 

  43. Glaeser RM, Downing KH, DeRosier DJ, Chiu W, Frank J (2007) Electron crystallography of biological macromolecules. Oxford University Press, Oxford

    Google Scholar 

  44. DeRosier DJ (2000) Correction of high-resolution data for curvature of the Ewald sphere. Ultramicroscopy 81:83–98

    Article  PubMed  CAS  Google Scholar 

  45. Wolf M, DeRosier DJ, Grigorieff N (2006) Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 106:376–382

    Article  PubMed  CAS  Google Scholar 

  46. Bracewell RN (2000) The Fourier transform and its applications, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  47. Orlova EV, Dube P, Harris JR, Beckman E, Zemlin F, Markl J, van Heel M (1997) Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 A resolution by electron cryomicroscopy and angular reconstitution. J Mol Biol 271:417–437

    Article  PubMed  CAS  Google Scholar 

  48. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  PubMed  CAS  Google Scholar 

  49. Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142:334–347

    Article  PubMed  Google Scholar 

  50. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    Article  PubMed  CAS  Google Scholar 

  51. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  PubMed  CAS  Google Scholar 

  52. Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C, Bern M, Mouche F, de Haas F, Hall RJ, Kriegman DJ, Ludtke SJ, Mallick SP, Penczek PA, Roseman AM, Sigworth FJ, Volkmann N, Potter CS (2004) Automatic particle selection: results of a comparative study. J Struct Biol 145:3–14

    Article  PubMed  CAS  Google Scholar 

  53. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745

    Article  PubMed  CAS  Google Scholar 

  54. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  PubMed  CAS  Google Scholar 

  55. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  PubMed  CAS  Google Scholar 

  56. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  57. Sorzano CO, Marabini R, Velazquez-Muriel J, Bilbao-Castro JR, Scheres SH, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  PubMed  CAS  Google Scholar 

  58. Radermacher M (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9:359–394

    Article  PubMed  CAS  Google Scholar 

  59. Leschziner AE, Nogales E (2006) The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J Struct Biol 153:284–299

    Article  PubMed  Google Scholar 

  60. Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A (1970) Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226:421–425

    Article  PubMed  CAS  Google Scholar 

  61. Van Heel M (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111–123

    Article  PubMed  Google Scholar 

  62. van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194

    PubMed  Google Scholar 

  63. Shaikh TR, Trujillo R, LeBarron JS, Baxter WT, Frank J (2008) Particle-verification for single-particle, reference-based reconstruction using multivariate data analysis and classification. J Struct Biol 164:41–48

    Article  PubMed  CAS  Google Scholar 

  64. Scheres SH, Valle M, Carazo JM (2005) Fast maximum-likelihood refinement of electron microscopy images. Bioinformatics 21(suppl 2):ii243–ii244

    Article  PubMed  CAS  Google Scholar 

  65. Schmid MF, Booth CR (2008) Methods for aligning and for averaging 3D volumes with missing data. J Struct Biol 161:243–248

    Article  PubMed  Google Scholar 

  66. Walz J, Typke D, Nitsch M, Koster AJ, Hegerl R, Baumeister W (1997) Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J Struct Biol 120:387–395

    Article  PubMed  CAS  Google Scholar 

  67. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974

    Article  PubMed  CAS  Google Scholar 

  68. Coifman RR, Shkolnisky Y, Sigworth FJ, Singer A (2010) Reference free structure determination through eigenvectors of center of mass operators. Appl Comput Harmon Anal 28:296–312

    Article  PubMed  Google Scholar 

  69. Singer A, Coifman RR, Sigworth FJ, Chester DW, Shkolnisky Y (2010) Detecting consistent common lines in cryo-EM by voting. J Struct Biol 169:312–322

    Article  PubMed  CAS  Google Scholar 

  70. Baker LA, Rubinstein JL (2008) Angle determination for side views in single particle electron microscopy. J Struct Biol 162:260–270

    Article  PubMed  CAS  Google Scholar 

  71. Harauz G, Ottensmeyer FP (1984) Nucleosome reconstruction via phosphorus mapping. Science 226:936–940

    Article  PubMed  CAS  Google Scholar 

  72. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  73. Stewart A, Grigorieff N (2004) Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102:67–84

    Article  PubMed  CAS  Google Scholar 

  74. Tagare HD, Barthel A, Sigworth FJ (2010) An adaptive expectation-maximization algorithm with GPU implementation for electron cryomicroscopy. J Struct Biol 171:256–265

    Article  PubMed  Google Scholar 

  75. Harauz G, van Heel M (1986) Exact filters for general geometry 3-dimensional reconstruction. Optik 73:146–156

    Google Scholar 

  76. Bottcher B, Wynne SA, Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91

    Article  PubMed  CAS  Google Scholar 

  77. Rosenthal PB, Crowther RA, Henderson R (2003) An objective criterion for resolution assessment in single-particle electron microscopy (appendix). J Mol Biol 333:743–745

    Article  Google Scholar 

  78. van Heel M, Schatz M (2005) Fourier shell correlation threshold criteria. J Struct Biol 151:250–262

    Article  PubMed  Google Scholar 

  79. Samso M, Wagenknecht T, Allen PD (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12:539–544

    Article  PubMed  CAS  Google Scholar 

  80. Sousa D, Grigorieff N (2007) Ab initio resolution measurement for single particle structures. J Struct Biol 157:201–210

    Article  PubMed  CAS  Google Scholar 

  81. Zhou ZH (2008) Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 18:218–228

    Article  PubMed  CAS  Google Scholar 

  82. Saad A, Ludtke SJ, Jakana J, Rixon FJ, Tsuruta H, Chiu W (2001) Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. J Struct Biol 133:32–42

    Article  PubMed  CAS  Google Scholar 

  83. Fernandez JJ, Luque D, Caston JR, Carrascosa JL (2008) Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164:170–175

    Article  PubMed  CAS  Google Scholar 

  84. Wriggers W, Birmanns S (2001) Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. J Struct Biol 133:193–202

    Article  PubMed  CAS  Google Scholar 

  85. Schroder GF, Brunger AT, Levitt M (2007) Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15:1630–1641

    Article  PubMed  Google Scholar 

  86. Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49:174–180

    Article  PubMed  CAS  Google Scholar 

  87. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  PubMed  CAS  Google Scholar 

  88. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287

    Article  PubMed  CAS  Google Scholar 

  89. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  PubMed  CAS  Google Scholar 

  90. Henderson R, Baldwin JM, Downing KH, Lepault J, Zemlin F (1986) Structure of purple membrane from Halobacterium halobrium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19:147–178

    Article  CAS  Google Scholar 

  91. Kunji ER, von Gronau S, Oesterhelt D, Henderson R (2000) The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: a new unbending procedure for two-dimensional crystals by using a global reference structure. Proc Natl Acad Sci USA 97:4637–4642

    Article  PubMed  CAS  Google Scholar 

  92. Kubalek E, Ralston S, Lindstrom J, Unwin N (1987) Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata. J Cell Biol 105:9–18

    Article  PubMed  CAS  Google Scholar 

  93. Stahlberg H, Dubochet J, Vogel H, Ghosh R (1998) Are the light-harvesting I complexes from Rhodospirillum rubrum arranged around the reaction centre in a square geometry? J Mol Biol 282:819–831

    Article  PubMed  CAS  Google Scholar 

  94. Zeng X, Stahlberg H, Grigorieff N (2007) A maximum likelihood approach to two-dimensional crystals. J Struct Biol 160:362–374

    Article  PubMed  CAS  Google Scholar 

  95. Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lindsay Baker for a critical reading of this chapter. J.L.R. was supported by a New Investigator award from the Canadian Institutes of Health Research (CIHR). This work was funded by operating grant MOP 81294 from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Rubinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lau, W.C.Y., Rubinstein, J.L. (2013). Single Particle Electron Microscopy. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics