Legionella pp 151-162 | Cite as

Culturing, Media, and Handling of Legionella

Part of the Methods in Molecular Biology book series (MIMB, volume 954)


This chapter describes methods for culturing Legionella pneumophila in both complex and defined media. The first protocol describes the use of buffered charcoal yeast extract (BCYE) agar, the solid medium that is most commonly used for culturing L. pneumophila. The next procedure details the cultivation of L. pneumophila in buffered yeast extract (BYE) broth, i.e., the liquid medium version of BCYE agar. We describe how culturing in BYE broth can also be used for investigating proteins that are secreted by the type II secretion system of L. pneumophila. The next part of the chapter explains the cultivation of L. pneumophila in a chemically defined liquid media (CDM). CDM contains a mixture of amino acids, metals, α-ketoglutarate, and pyruvate. Because of its defined nature, CDM provides a simple means for controlling the concentration of nutrients and thereby allows for investigations of physiology and metabolism. To illustrate this point, the use of deferrated CDM for the purpose of assessing Legionella siderophore production is outlined. Finally, the chapter ends with a brief discussion of the storage and shipping of L. pneumophila.

Key words

Legionella pneumophila Complex media Defined media BCYE BYE CDM Type II protein secretion Protease Iron Siderophore 


  1. 1.
    Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441PubMedGoogle Scholar
  2. 2.
    Edelstein PH (1981) Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol 14:298–303PubMedGoogle Scholar
  3. 3.
    DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP (2006) Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA 103:19146–19151PubMedCrossRefGoogle Scholar
  4. 4.
    Bruggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppee JY, Buchrieser C (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–1240PubMedCrossRefGoogle Scholar
  5. 5.
    Dietrich C, Heuner K, Brand BC, Hacker J, Steinert M (2001) Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 69:2116–2122PubMedCrossRefGoogle Scholar
  6. 6.
    Stone BJ, Abu Kwaik Y (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66:1768–1775PubMedGoogle Scholar
  7. 7.
    Liles MR, Viswanathan VK, Cianciotto NP (1998) Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 66:1776–1782PubMedGoogle Scholar
  8. 8.
    Hammer BK, Tateda ES, Swanson MS (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44:107–118PubMedCrossRefGoogle Scholar
  9. 9.
    Catrenich CE, Johnson W (1988) Virulence conversion of Legionella pneumophila: a one-way phenomenon. Infect Immun 56:3121–3125PubMedGoogle Scholar
  10. 10.
    Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329PubMedGoogle Scholar
  11. 11.
    Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695PubMedGoogle Scholar
  12. 12.
    George JR, Pine L, Reeves MW, Harrell WK (1980) Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11:286–291PubMedGoogle Scholar
  13. 13.
    Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9:615–626PubMedGoogle Scholar
  14. 14.
    Chatfield CH, Cianciotto NP (2007) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070PubMedCrossRefGoogle Scholar
  15. 15.
    Allard KA, Viswanathan VK, Cianciotto NP (2006) lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363PubMedCrossRefGoogle Scholar
  16. 16.
    Starkenburg SR, Casey JM, Cianciotto NP (2004) Siderophore activity among members of the Legionella genus. Curr Microbiol 49:203–207PubMedCrossRefGoogle Scholar
  17. 17.
    Cianciotto NP (2009) Many substrates and functions of type II protein secretion: lessons learned from Legionella pneumophila. Future Microbiol 4:797–805PubMedCrossRefGoogle Scholar
  18. 18.
    Pearce MM, Cianciotto NP (2009) Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 300:256–264PubMedCrossRefGoogle Scholar
  19. 19.
    Aragon V, Kurtz S, Flieger A, Neumeister B, Cianciotto NP (2000) Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 68:1855–1863PubMedCrossRefGoogle Scholar
  20. 20.
    Rossier O, Cianciotto NP (2001) Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 69:2092–2098PubMedCrossRefGoogle Scholar
  21. 21.
    Dreyfus LA, Iglewski BH (1986) Purification and characterization of an extracellular protease of Legionella pneumophila. Infect Immun 51:736–743PubMedGoogle Scholar
  22. 22.
    Tesh MJ, Miller RD (1982) Growth of Legionella pneumophila in defined media: requirement for magnesium and potassium. Can J Microbiol 28:1055–1058PubMedCrossRefGoogle Scholar
  23. 23.
    Mauchline WS, Araujo R, Wait R, Dowsett AB, Dennis PJ, Keevil CW (1992) Physiology and morphology of Legionella pneumophila in continuous culture at low oxygen concentration. J Gen Microbiol 138:2371–2380PubMedGoogle Scholar
  24. 24.
    Liles MR, Aber Scheel T, Cianciotto NP (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182:749–757PubMedCrossRefGoogle Scholar
  25. 25.
    Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP (2009) Purification of legiobactin and the importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 77:2887–2895PubMedCrossRefGoogle Scholar
  26. 26.
    Edelstein PH, Edelstein MA (1993) Comparison of three buffers used in the formulation of buffered charcoal yeast extract medium. J Clin Microbiol 31:3329–3330PubMedGoogle Scholar
  27. 27.
    Polesky AH, Ross JT, Falkow S, Tompkins LS (2001) Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect Immun 69:977–987PubMedCrossRefGoogle Scholar
  28. 28.
    Domingue EL, Tyndall RL, Mayberry WR, Pancorbo OC (1988) Effects of three oxidizing biocides on Legionella pneumophila ­serogroup 1. Appl Environ Microbiol 54:741–747PubMedGoogle Scholar
  29. 29.
    Sturgill-Koszycki S, Swanson MS (2000) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192:1261–1272PubMedCrossRefGoogle Scholar
  30. 30.
    Ristroph JD, Hedlund KW, Allen RG (1980) Liquid medium for growth of Legionella pneumophila. J Clin Microbiol 11:19–21PubMedGoogle Scholar
  31. 31.
    Hoffman PS, Pine L, Bell S (1983) Production of superoxide and hydrogen peroxide in medium used to culture Legionella pneumophila: catalytic decomposition by charcoal. Appl Environ Microbiol 45:784–791PubMedGoogle Scholar
  32. 32.
    Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  33. 33.
    Morrill WE, Barbaree JM, Fields BS, Sanden GN, Martin WT (1990) Increased recovery of Legionella micdadei and Legionella bozemanii on buffered charcoal yeast extract agar supplemented with albumin. J Clin Microbiol 28:616–618PubMedGoogle Scholar
  34. 34.
    Chatfield CH, Mulhern BJ, Burnside DM, Cianciotto NP (2011) Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J Bacteriol 193:1563–1575PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christa H. Chatfield
    • 1
  • Nicholas P. Cianciotto
    • 1
  1. 1.Department of Microbiology and ImmunologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations