Legionella pp 333-344 | Cite as

Subcellular Localization of Legionella Dot/Icm Effectors

  • Adam J. Vogrin
  • Aurelie Mousnier
  • Gad Frankel
  • Elizabeth L. Hartland
Part of the Methods in Molecular Biology book series (MIMB, volume 954)


The translocation of effector proteins by the Dot/Icm type IV secretion system is central to the ability of Legionella pneumophila to persist and replicate within eukaryotic cells. The subcellular localization of translocated Dot/Icm proteins in host cells provides insight into their function. Through co-staining with host cell markers, effector proteins may be localized to specific subcellular compartments and membranes, which frequently reflects their host cell target and mechanism of action. In this chapter, we describe protocols to (1) localize effector proteins within cells by ectopic expression using green fluorescent protein fusions and (2) localize effector proteins within infected cells using epitope-tagged effector proteins and immuno-fluorescence microscopy.

Key words

Legionella pneumophila HEK293T cells Epitope tagging Laser scanning confocal microscopy Transfection Infection Type IV secretion 



ACES Yeast Extract


Buffered Charcoal Yeast Extract


Bovine Serum Albumin




Dulbecco’s Modified Eagle Medium


Enhanced green fluorescent protein








Phosphate-buffered saline


Polymerase chain reaction


  1. 1.
    Cambronne ED, Roy CR (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic 7:929–939PubMedCrossRefGoogle Scholar
  2. 2.
    Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386PubMedCrossRefGoogle Scholar
  3. 3.
    Nagai H, Kubori T (2011) Type IVB secretion systems of Legionella and other gram-negative bacteria. Front Microbiol 2:136PubMedGoogle Scholar
  4. 4.
    Luo ZQ (2012) Legionella secreted effectors and innate immune responses. Cell Microbiol 14:19–27PubMedCrossRefGoogle Scholar
  5. 5.
    Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298PubMedCrossRefGoogle Scholar
  6. 6.
    Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283PubMedCrossRefGoogle Scholar
  7. 7.
    Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352PubMedCrossRefGoogle Scholar
  8. 8.
    Kagan JC, Murata T, Roy CR (2005) Analysis of Rab1 recruitment to vacuoles containing Legionella pneumophila. Methods Enzymol 403:71–81PubMedCrossRefGoogle Scholar
  9. 9.
    Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954PubMedCrossRefGoogle Scholar
  10. 10.
    Kagan JC, Stein MP, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211PubMedCrossRefGoogle Scholar
  11. 11.
    Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19PubMedCrossRefGoogle Scholar
  12. 12.
    Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA 95:1669–1674PubMedCrossRefGoogle Scholar
  13. 13.
    Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6:e17638PubMedCrossRefGoogle Scholar
  14. 14.
    Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ, Wee B, Fry NK, Harrison TG, Newton HJ, Thomson NR, Beatson SA, Dougan G, Hartland EL, Frankel G (2010) Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 192:6001–6016PubMedCrossRefGoogle Scholar
  15. 15.
    Dolezal P, Aili M, Tong J, Jiang J-H, Marobbio CM, Lee SF, Schuelein R, Belluzzo S, Binova E, Mousnier A, Frankel G, Giannuzzi G, Palmieri F, Gabriel K, Naderer T, Hartland EL, Lithgow T (2012) Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 8(1):e1002459PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Adam J. Vogrin
    • 1
  • Aurelie Mousnier
    • 2
  • Gad Frankel
    • 3
  • Elizabeth L. Hartland
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of MelbourneMelbourneAustralia
  2. 2.Division of Cell and Molecular BiologyCentre for Molecular Microbiology and Infection, Imperial College of LondonLondonUK
  3. 3.Division of Cell and Molecular BiologyCentre for Molecular Microbiology and Infection, Imperial College LondonLondonUK

Personalised recommendations