Skip to main content

Fluorescence In Situ Hybridization Applications for Super-Resolution 3D Structured Illumination Microscopy

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  Google Scholar 

  2. Cremer M, Grasser F, Lanctôt C et al (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239

    Article  PubMed  CAS  Google Scholar 

  3. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  4. Misteli T (2010) Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol 2:a000794

    Article  PubMed  Google Scholar 

  5. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–386, 385–6, 388, 390 passim

    Article  PubMed  CAS  Google Scholar 

  6. Speicher MR, Gwyn BS, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  7. Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  Google Scholar 

  8. Silverman AP, Kool ET (2007) Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization. Adv Clin Chem 43:79–115

    Article  PubMed  CAS  Google Scholar 

  9. Blanco AM, Artero R (2010) A practical approach to FRET-based PNA fluorescence in situ hybridization. Methods 52:343–351

    Article  PubMed  CAS  Google Scholar 

  10. Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New York, p 985

    Book  Google Scholar 

  11. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  PubMed  CAS  Google Scholar 

  12. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  PubMed  CAS  Google Scholar 

  13. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314

    Article  PubMed  CAS  Google Scholar 

  14. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  PubMed  CAS  Google Scholar 

  15. Gustafsson MGL, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  PubMed  CAS  Google Scholar 

  16. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  PubMed  CAS  Google Scholar 

  17. Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336

    Article  PubMed  CAS  Google Scholar 

  18. Baddeley D, Chagin VO, Schermelleh L et al (2010) Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38:e8

    Article  PubMed  CAS  Google Scholar 

  19. Brown ACN, Oddos S, Dobbie IM et al (2011) Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol 9:e1001152

    Article  PubMed  CAS  Google Scholar 

  20. Guizetti J, Schermelleh L, Mantler J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620

    Article  PubMed  CAS  Google Scholar 

  21. Markaki Y, Gunkel M, Schermelleh L et al (2010) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 75:475–492

    Article  PubMed  CAS  Google Scholar 

  22. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108:4846–4851

    Article  PubMed  CAS  Google Scholar 

  23. Bennett BT, Bewersdorf J, Knight KL (2009) Immunofluorescence imaging of DNA damage response proteins: optimizing protocols for super-resolution microscopy. Methods 48:63–71

    Article  PubMed  CAS  Google Scholar 

  24. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Cremer T, Cremer M (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture. Bioessays 34(5):412–426

    Article  PubMed  Google Scholar 

  25. Solovei I, Cavallo A, Schermelleh L et al (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  PubMed  CAS  Google Scholar 

  26. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31(1076–8):1080, 1082 passim

    Google Scholar 

  27. Levsky JM, Braut SA, Singer RH (2003) Single cell gene expression profiling: multiplexed expression fluorescence in situ hybridization (FISH) application to the analysis of cultured cells. http://www.singerlab.org/protocols

  28. Tam R, Shopland LS, Johnson CV, McNeil JA, Lawrence JB (2002) Applications of RNA FISH for visualizing gene expression and nuclear architecture. In: Beatty B, Mai S, Squire J (eds) FISH: a practical approach. Oxford University Press, New York, p 93

    Google Scholar 

  29. Brown JM, Buckle VJ (2010) Detection of nascent RNA transcripts by fluorescence in situ hybridization. Methods Mol Biol 659:33–50

    Article  PubMed  CAS  Google Scholar 

  30. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Meth 5:877–879

    Article  CAS  Google Scholar 

  31. Carlton PM, Boulanger J, Kervrann C et al (2010) Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci USA 107:16016–16022

    Article  PubMed  CAS  Google Scholar 

  32. Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR, Davis I (2011) OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harb Protoc 2011:899–909

    Article  PubMed  Google Scholar 

  33. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420

    Article  PubMed  CAS  Google Scholar 

  34. Cordes T, Maiser A, Steinhauer C, Schermelleh L, Tinnefeld P (2011) Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys Chem Chem Phys 13:6699–6709

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to H. Leonhardt and the BioImaging Network Munich for generous support. We thank J. Neumann for technical help and A. Nemeth for critical comments on the manuscript. This work was supported by DFG grants SCHE1596/2-1 and CR59/28-1 to M.C. and L.S and SFB 684 to Y.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Schermelleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Markaki, Y., Smeets, D., Cremer, M., Schermelleh, L. (2013). Fluorescence In Situ Hybridization Applications for Super-Resolution 3D Structured Illumination Microscopy. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics