Skip to main content

Imaging of Transmembrane Proteins Directly Incorporated Within Supported Lipid Bilayers Using Atomic Force Microscopy

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Structural analysis of transmembrane proteins remains a challenge in biology, mainly due to their difficulty in being overexpressed and the required use of detergents that impair different steps of biochemistry classically used to obtain 3D crystals. In this context, we have developed a new technique for protein incorporation within supported lipid bilayers that only requires a few picomoles of protein per assay. Proteins are directly inserted into a detergent-destabilized bilayer that can be imaged in buffer with atomic force microscopy (AFM) allowing structural analysis down to sub-nanometer lateral resolution. In this chapter, we describe the main guidelines for this technique, from the choice of detergent to the requirements for AFM high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goksu EI, Vanegas JM, Blanchette CD et al (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266

    Article  PubMed  CAS  Google Scholar 

  2. El Kirat K, Morandat S, Dufrene YF (2009) Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochim Biophys Acta 1798:750–765

    PubMed  Google Scholar 

  3. Giocondi MC, Seantier B, Dosset P et al (2008) Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflugers Arch 456:179–188

    Article  PubMed  CAS  Google Scholar 

  4. Muller DJ, Sapra KT, Scheuring S et al (2006) Single-molecule studies of membrane proteins. Curr Opin Struct Biol 16:489–495

    Article  PubMed  Google Scholar 

  5. Muller DJ, Hand GM, Engel A, Sosinsky GE (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607

    Article  PubMed  CAS  Google Scholar 

  6. Scheuring S, Lévy D, Rigaud JL (2005) Watching the bacterial photosynthetic apparatus by in situ AFM. Biochim Biophys Acta 1712:109–127

    Article  PubMed  CAS  Google Scholar 

  7. Muller DJ, Fotiadis D, Scheuring S et al (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 76:1101–1111

    Article  PubMed  CAS  Google Scholar 

  8. Buzhynskyy N, Hite RK, Walz T, Scheuring S (2007) The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Rep 8:51–55

    Article  PubMed  CAS  Google Scholar 

  9. Milhiet PE, Gubellini F, Berquand A et al (2006) High resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophys J 91:3268–3275

    Article  PubMed  CAS  Google Scholar 

  10. Berquand A, Levy D, Gubellini F et al (2007) Influence of calcium on direct incorporation of membrane proteins into in-plane lipid bilayer. Ultramicroscopy 107:928–933

    Article  PubMed  CAS  Google Scholar 

  11. Picas L, Carretero-Genevrier A, Montero MT et al (2010) Preferential insertion of lactose permease in phospholipid domains: AFM observations. Biochim Biophys Acta 1798:1014–1019

    Article  PubMed  CAS  Google Scholar 

  12. Kumano S, Murakoshi M, Iida K et al (2010) Atomic force microscopy imaging of the structure of the motor protein prestin reconstituted into an artificial lipid bilayer. FEBS Lett 584:2872–2876

    Article  PubMed  CAS  Google Scholar 

  13. Tate CG (2010) Biochemistry. Membrane protein gymnastics. Science 328:1644–1645

    Article  PubMed  CAS  Google Scholar 

  14. Gubellini F, Francia F, Busselez J et al (2006) Functional and structural analysis of the photosynthetic apparatus of Rhodobacter veldkampii. Biochemistry 45:10512–10520

    Article  PubMed  CAS  Google Scholar 

  15. Francia F, Wang J, Venturoli G et al (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38:6834–6845

    Article  PubMed  CAS  Google Scholar 

  16. Merino S, Domenech O, Montero MT, Hernandez-Borrell J (2005) Atomic force microscopy study of Escherichia coli lactose permease proteolipid sheets. Biosens Bioelectron 20:1843–1846

    Article  PubMed  CAS  Google Scholar 

  17. Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    Article  PubMed  CAS  Google Scholar 

  18. Rigaud J, Levy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  PubMed  CAS  Google Scholar 

  19. Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta 1231:223–246

    Article  PubMed  Google Scholar 

  20. Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163

    Article  PubMed  CAS  Google Scholar 

  21. Seantier B, Giocondi M, Le Grimellec C, Milhiet P (2008) Probing supporting model and native membranes using AFM. Curr Opin Colloid Interface Sci 13:326–337

    Article  CAS  Google Scholar 

  22. Giocondi MC, Yamamoto D, Lesniewska E et al (2010) Surface topography of membrane domains. Biochim Biophys Acta 1798:703–718

    Article  PubMed  CAS  Google Scholar 

  23. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  PubMed  CAS  Google Scholar 

  24. Burns AR, Frankel DJ, Buranda T (2005) Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy. Biophys J 89:1081–1093

    Article  PubMed  CAS  Google Scholar 

  25. Chianta S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418

    Article  Google Scholar 

  26. Article  PubMed  CAS  Google Scholar 

  27. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  PubMed  CAS  Google Scholar 

  28. Abkarian M, Loiseau E, Massiera G (2011) Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:4610–4614

    Article  CAS  Google Scholar 

  29. Marabini R, Masegosa IM, San Martin MC et al (1996) Xmipp an image processing package for electron microscopy. J Struct Biol 116:237–240

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research has been supported by Institut Curie (DL), CNRS (DL and PEM), and INSERM (P.E.M.) and granted by the ANR grant “ANR-06-PCVI-0021-01, AFM -MB-PROT.” We are grateful to our collaborators involved in the project: Drs. A. Berquand, J. Hernández-Borrell, C. le Grimellec, F. Gubellini, P. Dosset, L. Picas, and B. Seantier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Milhiet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Levy, D., Milhiet, PE. (2013). Imaging of Transmembrane Proteins Directly Incorporated Within Supported Lipid Bilayers Using Atomic Force Microscopy. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics