Nanoimaging pp 227-251 | Cite as

Cellular Nanoimaging by Cryo Electron Tomography

  • Roman I. KoningEmail author
  • Abraham J. Koster
Part of the Methods in Molecular Biology book series (MIMB, volume 950)


Cryo electron tomography is a technique that allows visualization of biological specimens in three dimensions with nanometer resolution. For cryo immobilized life sciences samples it can reveal cellular morphology, the shape of membranous structures, and depict internal macromolecular arrangements and large proteins. Cryo electron tomography is a unique technique in structural biology research because it is the only tool that enables direct visualization of the cellular space at molecular resolution. Here we present the methods that we apply in our lab to perform cellular cryo electron tomography, which require expertise on cell biology for cell growth, physics for electron microscopy, and image processing for reconstruction and 3D visualization. We define the instrumentation, materials, and protocols for cryo electron tomography of whole cells, including cell growth, specimen vitrification, microscope alignments, data acquisition, tomographic image reconstruction, and 3D visualization techniques.

Key words

Cryo electron tomography Cellular microscopy Cryo specimen preparation 3D reconstruction Visualization 



R.I.K was financially supported by a Netherlands SmartMix grant and the NIMIC partner organizations ( through NIMIC, a public–private program.


  1. 1.
    Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou ZH (2008) Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 18:218–228PubMedCrossRefGoogle Scholar
  3. 3.
    Koning RI, Zovko S, Barcena M et al (2008) Cryo electron tomography of vitrified fibroblasts: microtubule plus ends in situ. J Struct Biol 161:459–468PubMedCrossRefGoogle Scholar
  4. 4.
    Patla I, Volberg T, Elad N et al (2010) Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat Cell Biol 12:909–915PubMedCrossRefGoogle Scholar
  5. 5.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76PubMedCrossRefGoogle Scholar
  6. 6.
    Korinek A, Beck F, Baumeister W, Nickell S, Plitzko JM (2011) Computer controlled cryo-electron microscopy—TOM(2) a software package for high-throughput applications. J Struct Biol 175:394–405PubMedCrossRefGoogle Scholar
  7. 7.
    Nickell S, Forster F, Linaroudis A et al (2005) TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234PubMedCrossRefGoogle Scholar
  8. 8.
    Zheng SQ, Keszthelyi B, Branlund E et al (2007) UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J Struct Biol 157:138–147PubMedCrossRefGoogle Scholar
  9. 9.
    Zheng SQ, Sedat JW, Agard DA (2010) Automated data collection for electron microscopic tomography. Methods Enzymol 481:283–315PubMedCrossRefGoogle Scholar
  10. 10.
    Koning RI, Koster AJ (2009) Cryo-electron tomography in biology and medicine. Ann Anat 191:427–445PubMedCrossRefGoogle Scholar
  11. 11.
    Iancu CV, Tivol WF, Schooler JB et al (2006) Electron cryotomography sample preparation using the Vitrobot. Nat Protoc 1:2813–2819PubMedCrossRefGoogle Scholar
  12. 12.
    Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14:375–379PubMedCrossRefGoogle Scholar
  13. 13.
    Vulovic M, Rieger B, van Vliet LJ, Koster AJ, Ravelli RB (2010) A toolkit for the characterization of CCD cameras for transmission electron microscopy. Acta Crystallogr D Biol Crystallogr 66:97–109PubMedCrossRefGoogle Scholar
  14. 14.
    Saxton WO, Baumeister W, Hahn M (1984) Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13:57–70PubMedCrossRefGoogle Scholar
  15. 15.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar
  16. 16.
    Frangakis AS, Hegerl R (2001) Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135:239–250PubMedCrossRefGoogle Scholar
  17. 17.
    Mercogliano CP, DeRosier DJ (2007) Concatenated metallothionein as a clonable gold label for electron microscopy. J Struct Biol 160:70–82PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Q, Mercogliano CP, Lowe J (2011) A ferritin-based label for cellular electron cryotomography. Structure 19:147–154PubMedCrossRefGoogle Scholar
  19. 19.
    Plitzko JM, Rigort A, Leis A (2009) Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr Opin Biotechnol 20:83–89PubMedCrossRefGoogle Scholar
  20. 20.
    van Driel LF, Valentijn JA, Valentijn KM, Koning RI, Koster AJ (2009) Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur J Cell Biol 88:669–684PubMedCrossRefGoogle Scholar
  21. 21.
    Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228PubMedCrossRefGoogle Scholar
  22. 22.
    van Tendeloo G, van Dyke D, Pennycook SJ (2011) Handbook of microscopy. Wiley-VCH, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations